Advertisement

Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+ CD25+ Treg cells

  • Hang Yan
  • Chen-guang Ding
  • Pu-xun Tian
  • Guan-qun Ge
  • Zhan-kui Jin
  • Li-ning Jia
  • Xiao-ming Ding
  • Xiao-ming Pan
  • Wu-jun Xue
Article

Abstract

Objective

In this paper we compared the two methods of cell sorting (magnetic cell sorting and flow cytometry sorting) for the isolation and function analysis of mouse CD4+ CD25+ regulatory T (Treg) cells, in order to inform further studies in Treg cell function.

Methods

We separately used magnetic cell sorting and flow cytometry sorting to identify CD4+ CD25+ Treg cells. After magnetic cell separation, we further used flow cytometry to analyze the purity of CD4+ CD25+ Treg cells, trypan blue staining to detect cell viability, and propidium iodide (PI) staining to assess the cell viability. We detected the immune inhibition of CD4+ CD25+ Treg cells in the in vitro proliferation experiments.

Results

The results showed that compared to flow cytometry sorting, magnetic cell sorting took more time and effort, but fewer live cells were obtained than with flow cytometry sorting. The CD4+ CD25+ Treg cells, however, obtained with both methods have similar immunosuppressive capacities.

Conclusion

The result suggests that both methods can be used in isolating CD4+ CD25+ Treg cells, and one can select the best method according to specific needs and availability of the methodologies.

Key words

CD4+ CD25+ Treg cells Flow cytometry sorting Magnetic cell sorting 

CLC number

Q291 R392 

References

  1. Campbell, D.J., Ziegler, S.F., 2007. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nature Reviews Immunology, 7(4):305–310. [doi:10.1038/nri2061]CrossRefPubMedGoogle Scholar
  2. Carrigan, S.O., Yang, Y.J., Issekutz, T., Forward, N., Hoskin, D., Johnston, B., Lin, T.J., 2009. Depletion of natural CD4(+)CD25(+) T regulatory cells with anti-CD25 antibody does not change the course of Pseudomonas aeruginosa-induced acute lung infection in mice. Immunobiology, 214(3):211–222. [doi:10.1016/j.imbio.2008.07.027]CrossRefPubMedGoogle Scholar
  3. Golshayan, D., Jiang, S.P., Tsang, J., Garin, M.I., Mottet, C., Lechler, R.I., 2007. In vitro-expanded donor alloantigen-specific CD4(+)CD25(+) regulatory T cells promote experimental transplantation tolerance. Blood, 109(2): 827–835. [doi:10.1182/blood-2006-05-025460]CrossRefPubMedGoogle Scholar
  4. Loser, K., Mehling, A., Loeser, S., Apelt, J., Kuhn, A., Grabbe, S., Schwarz, T., Penninger, J.M., Beissert, S., 2006. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nature Medicine, 12(12): 1372–1379. [doi:10.1038/nm1518]CrossRefPubMedGoogle Scholar
  5. Lu, Y.Q., Huang, W.D., Cai, X.J., Gu, L.H., Mou, H.Z., 2008. Hypertonic saline resuscitation reduces apoptosis of intestinal mucosa in a rat model of hemorrhagic shock. Journal of Zhejiang University-SCIENCE B, 9(11):879–884. [doi:10.1631/jzus.B0820116]CrossRefPubMedGoogle Scholar
  6. Milner, J.D., Ward, J.M., Keane-Myers, A., Paul, W.E., 2007. Lymphopenic mice reconstituted with limited repertoire T cells develop severe, multiorgan, Th2-associated inflammatory disease. Proceedings of the National Academy of Sciences of the United States of America, 104(2): 576–581. [doi:10.1073/pnas.0610289104]CrossRefPubMedGoogle Scholar
  7. Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., Miyachi, Y., Tsukada, T., Sakaguchi, S., 2007. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature, 446(7136):685–689. [doi:10.1038/nature05673]CrossRefPubMedGoogle Scholar
  8. Steger, U., Kingsley, C.L., Karim, M., Wood, K.J., 2006. CD25(+)CD4(+) regulatory T cells develop in mice not only during spontaneous acceptance of liver allografts but also after acute allograft rejection. Transplantation, 82(9): 1202–1209. [doi:10.1097/01.tp.0000235913.58337.b4]CrossRefPubMedGoogle Scholar
  9. Wang, H.J., Zhao, L., Sun, Z.Y., Sun, L.G., Zhang, B.J., Zhao, Y., 2006. A potential side effect of cyclosporin A: inhibition of CD4(+)CD25(+) regulatory T cells in mice. Transplantation, 82(11):1484–1492. [doi:10.1097/01.tp.0000246312.89689.17]CrossRefPubMedGoogle Scholar
  10. Xia, G.L., Shah, M., Luo, X.R., 2009. Prevention of allograft rejection by amplification of Foxp3+CD4+CD25+ regulatory T cells. Translational Research, 153(2):60–70.CrossRefPubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Hang Yan
    • 1
  • Chen-guang Ding
    • 1
  • Pu-xun Tian
    • 1
  • Guan-qun Ge
    • 1
  • Zhan-kui Jin
    • 1
  • Li-ning Jia
    • 1
  • Xiao-ming Ding
    • 1
  • Xiao-ming Pan
    • 1
  • Wu-jun Xue
    • 1
  1. 1.Department of Renal Transplantation, Center of Nephropathy, the First Affiliated Hospital, Medicine CollegeXi’an Jiaotong UniversityXi’anChina

Personalised recommendations