Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system

  • Hong-zi Zhang
  • Xu-wei Long
  • Ru-yi Sha
  • Guo-liang Zhang
  • Qin Meng
Article

Abstract

Oily wastewater generated by various industries creates a major ecological problem throughout the world. The traditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of petroleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 °C, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rhamnolipids) to 63%. At 25 °C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20 °C significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater.

Key words

Oily wastewater Rhamnolipid Aerated active sludge system Biodegradation 

CLC number

X52 

References

  1. Abalos, A., Viñas, M., Sabaté, J., Manresa, M.A., Solanas, A.M., 2004. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation, 15(4):249–260. [doi:10.1023/B:BIOD.0000042915.28757.fb]CrossRefPubMedGoogle Scholar
  2. Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., Nabi, A., 2008. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, 223(1–3):143–151. [doi:10.1016/j.desal.2007.01.198]CrossRefGoogle Scholar
  3. Allard, A.S., Neilson, A.H., 1997. Bioremediation of organic waste sites: a critical review of microbiological aspects. Int. Biodeter. Biodegrad., 39(4):253–285. [doi:10.1016/S0964-8305(97)00021-8]CrossRefGoogle Scholar
  4. Al-Shamrani, A.A., James, A., Xiao, H., 2002a. Destabilisation of oil-water emulsions and separation by dissolved air flotation. Water Res., 36(6):1503–1512. [doi:10.1016/S0043-1354(01)00347-5]CrossRefPubMedGoogle Scholar
  5. Al-Shamrani, A.A., James, A., Xiao, H., 2002b. Separation of oil from water by dissolved air flotation. Colloid. Surf. A, 209(1):15–26. [doi:10.1016/S0927-7757(02)00208-X]CrossRefGoogle Scholar
  6. ASTM D971-99a, 2004. Standard Test Method for Interfacial Tension of Oil Against Water by the Ring Method. ASTM international, West Conshohocken, Pennsylvania. Available from http://www.astm.org/Standards/D971.htm [doi:10.1520/D0971-99AR04]Google Scholar
  7. Bai, G., Brusseau, M., Miller, R., 1997. Biosurfactant-enhanced removal of residual hydrocarbon from soil. J. Contam. Hydrol., 25(1–2):157–170. [doi:10.1016/S0169-7722(96)00034-4]CrossRefGoogle Scholar
  8. Carvalho, G., Novais, J.M., Pinheiro, H.M., Vanrolleghem, P.A., 2004. Model development and application for surfactant biodegradation in an acclimatising activated sludge system. Chemosphere, 54(10):1495–1502. [doi:10.1016/j.chemosphere.2003.08.028]CrossRefPubMedGoogle Scholar
  9. Chang, I., Chung, C., Han, S., 2001. Treatment of oily wastewater by ultrafiltration and ozone. Desalination, 133(3):225–232. [doi:10.1016/S0011-9164(01)00103-5]CrossRefGoogle Scholar
  10. Clifford, J., Ioannidis, M., Legge, R., 2007. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant. J. Colloid Interf. Sci., 305(2):361–365. [doi:10.1016/j.jcis.2006.10.026]CrossRefGoogle Scholar
  11. Costa, S.G.V.A.O., Nitschke, M., Haddad, R., Eberlin, M.N., Contiero, J., 2006. Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem., 41(2):483–488. [doi:10.1016/j.procbio.2005.07.002]CrossRefGoogle Scholar
  12. Lee, M.J., Lee, M.J., Kim, M.K., Kim, M.K., Kwon, M.J., Deog, P.B., Kim, M.H., Michael, G., Lee, S.T., 2005. Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31. J. Biosci. Bioeng., 100(4):429–436. [doi:10.1263/jbb.100.429]CrossRefPubMedGoogle Scholar
  13. Miller, R.M., Bartha, R., 1989. Evidence for liposome encapsulation for transport-limited microbial metabolism ofsolid alkanes. Appl. Environ. Microbiol., 55(2):269–274.PubMedGoogle Scholar
  14. Mitsui, T., Nakamura, S., Harusawa, F., Machida, Y., 1971. Changes in the interfacial tension with temperature and their effects on the particle size and stability of emulsions. Colloid Polym. Sci., 250(3):227–230.Google Scholar
  15. Mohan, P.K., Nakhla, G., Yanful, E.K., 2006. Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res., 40(3):533–540. [doi:10.1016/j.watres.2005.11.030]CrossRefPubMedGoogle Scholar
  16. Noordman, W.H., Wachter, J.H.J., Boer, G.J., Janssen, D.B., 2002. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol., 94(2):195–212. [doi:10.1016/S0168-1656(01)00405-9]CrossRefPubMedGoogle Scholar
  17. Patel, R.H., Desal, A.J., 1997. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. J. Basic Microbiol., 37(4):281–286. [doi:10.1002/jobm.3620370407]CrossRefPubMedGoogle Scholar
  18. Qing, J.L., Qing, O.Z., Ouyang, Z.Y., 2005. Ecological behavior of linear alkylbenzene sulfonate (LAS) in soilplant systems. Pedosphere, 15(2):216–224.Google Scholar
  19. Rosso, D., Larson, L., Stenstrom, M., 2006. Surfactant effects on alpha factors in full-scale wastewater aeration systems. Water Sci. Technol., 54(10):143–153. [doi:10.2166/wst.2006.768]CrossRefPubMedGoogle Scholar
  20. Soda, S., Ike, M., Fujita, M., 1998. Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol. J. Ferment. Bioeng., 86(1): 90–96. [doi:10.1016/S0922-338X(98)80040-8]CrossRefGoogle Scholar
  21. Tang, W., Zeng, X., Zhao, J., Gu, G., Li, Y., 2003. The study on the wet air oxidation of highly concentrated emulsified wastewater and its kinetics. Sep. Purif. Technol., 31(1): 77–82. [doi:10.1016/S1383-5866(02)00161-2]CrossRefGoogle Scholar
  22. Tellez, G.T., Nirmalakhandan, N., Gardea-Torresdey, J.L., 2002. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Adv. Environ. Res., 6(4):455–470. [doi:10.1016/S1093-0191(01)00073-9]CrossRefGoogle Scholar
  23. Uysal, A., Turkman, A., 2005. Effect of biosurfactant on 2,4-dichlorophenol biodegradation in an active sludge bioreactor. Process Biochem., 40(8):2745–2749. [doi:10.1016/j.procbio.2004.12.026]CrossRefGoogle Scholar
  24. Yang, L., Lai, C.T., Shieh, W.K., 2000. Biodegradation of dispersed diesel fuel under high salinity conditions. Water Res., 34(13):3303–3314. [doi:10.1016/S0043-1354(00)00 072-5]CrossRefGoogle Scholar
  25. Zhang, H., Xiang, H., Zhang, G., Cao, X., Meng, Q., 2009. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution. J. Hazard. Mater., 167(1–3):217–223. [doi:10.1016/j.jhazmat.2008.12.110]CrossRefPubMedGoogle Scholar
  26. Zhang, Y., Miller, R., 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (Biosurfactant). Appl. Environ. Microbiol., 58(10): 3276–3282.PubMedGoogle Scholar
  27. Zhu, Y., Gan, J.J., Zhang, G.L., Yao, B., Zhu, W.J., Meng, Q., 2007. Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju.u1M. J. Zhejiang Univ. Sci. A, 8(9):1514–1520. [doi:10.1631/jzus.2007.A1514]CrossRefGoogle Scholar
  28. Zouboulis, A., Avranas, A., 2000. Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation. Colloid Surf. A, 172(1-3):153–161. [doi:10.1016/S0927-7757(00)00561-6]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Hong-zi Zhang
    • 1
  • Xu-wei Long
    • 1
  • Ru-yi Sha
    • 1
  • Guo-liang Zhang
    • 2
  • Qin Meng
    • 1
  1. 1.Department of Chemical Engineering and Biochemical EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Environmental Engineering and Biochemical EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations