Journal of Zhejiang University SCIENCE B

, Volume 11, Issue 6, pp 451–457 | Cite as

Mechanism of action of two insect toxins huwentoxin-III and hainantoxin-VI on voltage-gated sodium channels

  • Rui-lan Wang
  • Su Yi
  • Song-ping Liang


Selenocosmia huwena and Selenocosmia hainana are two tarantula species found in southern China. Their venoms contain abundant peptide toxins. Two new neurotoxic peptides, huwentoxin-III (HWTX-III) and hainantoxin-VI (HNTX-VI), were obtained from the venom using ion-exchange chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The mechanism of action of HWTX-III and HNTX-VI on insect neuronal voltage-gated sodium channels (VGSCs) was studied via whole-cell patch clamp techniques. In a fashion similar to δ-atracotoxins, HNTX-VI can induce a slowdown of current inactivation of the VGSC and reduction in the peak of Na+ current in cockroach dorsal unpaired median (DUM) neurons. Meanwhile, 10 μmol/L HNTX-IV caused a positive shift of steady-state inactivation of sodium channel. HWTX-III inhibited VGSCs on DUM neurons (concentration of toxin at half-maximal inhibition (IC50)≈1.106 μmol/L) in a way much similar to tetrodotoxin (TTX). HWTX-III had no effect on the kinetics of activation and inactivation. The shift in the steady-state inactivation curve was distinct from other depressant spider toxins. The diverse effect and the mechanism of action of the two insect toxins illustrate the diverse biological activities of spider toxins and provide a fresh theoretical foundation to design and develop novel insecticides.

Key words

Insect neurotoxin Dorsal unpaired median neurons Sodium channel Whole-cell patch clamp technique 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alami, M., Vacher, H., Bosmans, F., Devaux, C., Rosso, J.P., Bougis, P.E., Tytgatt, J., Darbon, H., Martin-Eauclaire, M.F., 2003. Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels. Biochemical Journal, 375(3):551–560. [doi:10.1042/BJ20030688]CrossRefPubMedGoogle Scholar
  2. Catterall, W.A., 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 26(1):13–25. [doi:10.1016/S0896-6273(00)81133-2]CrossRefPubMedGoogle Scholar
  3. de Lima, M.E., Stankiewicz, M., Hamon, A., Figueiredo, S.G., Cordeiro, M.N., Diniz, C.R., Martin-Eauclaire, M.F., Pelhate, M., 2002. The toxin Tx4 (6-1) from the spider Phoneutria nigriventer slows down Na+ current inactivation in insect CNS via binding to receptor site 3. Journal of Insect Physiology, 48(1):53–61. [doi:10.1016/S0022-1910(01)00143-3]CrossRefPubMedGoogle Scholar
  4. Goldin, A.L., Barchi, R.L., Caldwell, J.H., Hofmann, F., Howe, J.R., Hunter, J.C., Kallen, R.G., Mandel, G., Meisler, M.H., Netter, Y.B., et al., 2000. Nomenclature of voltage-gated sodium channels. Neuron, 28(2):365–368. [doi:10.1016/S0896-6273(00)00116-1]CrossRefPubMedGoogle Scholar
  5. Grolleau, F., Stankiewicz, M., Birinyi-Strachan, L.C., Wang, X.H., Nicholson, G.M., Pelhate, M., Lapied, B., 2001. Electrophysiological analysis of the neurotoxic action of a funnel-web spider toxin, δ-atracotoxin-HV1a on insect voltage-gated Na+ channels. The Journal of Experimental Biology, 204(4):711–721.PubMedGoogle Scholar
  6. Haigeny, M.C., Lakatta, E.G., Stern, M.D., Silverman, H.S., 1994. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation, 90(1):391–399.Google Scholar
  7. Huang, R.H., Liu, Z.H., Liang, S.P., 2003. Purification and characterization of a neurotoxic peptide huwentoxin-III and a natural inactive mutant from the venom of the spider Selenocosmia huwena Wang (Ornithoctonus huwena Wang). Acta Biochimica et Biophysica Sinica, 35(11): 976–980.PubMedGoogle Scholar
  8. Li, D., Xiao, Y., Hu, W., Xie, J., Bosmans, F., Tytgat, J., Liang, S., 2003. Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Letters, 555(3): 616–622. [doi:10.1016/S0014-5793(03)01303-6]CrossRefPubMedGoogle Scholar
  9. Li, D.L., Xiao, Y.C., Xu, X., Xiong, X., Lu, S.Y., Liu, Z.H., Zhu, Q., Wang, M.C., Gu, X.C., Liang, S.P., 2004. Structure-activity relationships of hainantoxin-IV and structure determination of active and inactive sodium channel blockers. Journal of Biological Chemistry, 279(36): 37734–37740. [doi:10.1074/jbc.M405765200]CrossRefPubMedGoogle Scholar
  10. Meng, Z.Q., Nie, A.F., 2005. Enhancement of sodium metabisulfite on sodium currents in acutely isolated rat hippocampal CA1 neurons. Environmental Toxicology and Pharmacology, 20(1):35–41. [doi:10.1016/j.etap.2004.10.003]CrossRefGoogle Scholar
  11. Nicholson, G.M., 2007. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon, 49(4):490–512. [doi:10.1016/j.toxicon.2006.11.027]CrossRefPubMedGoogle Scholar
  12. Nicholson, G.M., Walsh, R., Little, M.J., Tyler, M.I., 1998. Characterisation of the effects of robustoxin, the lethal neurotoxin from the Sydney funnel-web spider Atrax robustus, on sodium channel activation and inactivation. Pflügers Archiv-European Journal of Physiology, 436(1): 117–126. [doi:10.1007/s004240050612]CrossRefPubMedGoogle Scholar
  13. Pan, J.Y., Hu, W.J., Liang, S.P., 2002. Purification, sequencing and characterization of hainantoxin-VI, a neurotoxin from the Chinese bird spider Selenocosmia hainana. Zoological Research, 23(4):280–283 (in Chinese).Google Scholar
  14. Richard Benzinger, G., Tonkovich, G.S., Hanck, D.A., 1999. Augmentation of recovery from inactivation by site-3 Na channel toxins. A single-channel and whole-cell study of sustained currents. The Journal of General Physiology, 113(2):333–346. [doi:10.1085/jgp.113.2.333]CrossRefPubMedGoogle Scholar
  15. Rogers, J.C., Qu, Y., Tanada, T.N., Scheuer, T., Catterall, W.A., 1996. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel alpha subunit. Journal of Biological Chemistry, 271(27):15950–15962. [doi:10.1074/jbc.271.27.15950]CrossRefPubMedGoogle Scholar
  16. Shon, K.J., Olivera, B.M., Watkins, M., Jacobsen, R.B., Gray, W.R., Floresca, C.Z., Cruz, L.J., Hillyard, D.R., Brink, A., Terlau, H., et al., 1998. μ-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. The Journal of Neuroscience, 18(12): 4473–4481.PubMedGoogle Scholar
  17. Shu, Q., Liang, S.P., 1999. Purification and characterization of huwentoxin-II, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena. Journal of Peptide Research, 53(5):486–491. [doi:10.1034/j.1399-3011.1999.00039.x]CrossRefPubMedGoogle Scholar
  18. Szeto, T.H., Birinyi-Strachan, L.C., Smith, R.W., Connor, M., Christie, M.J., King, G., Nicholson, G.M., 2000. Isolation and pharmacological characterisation of δ-atracotoxin-Hv1b, a vertebrate-selective sodium channel toxin. FEBS Letters, 470(3):293–299. [doi:10.1016/S0014-5793(00)01339-9]CrossRefPubMedGoogle Scholar
  19. Taylor, C.P., Meldrum, B., 1995. Na+ channels as targets for neuroprotective drugs. Trends in Pharmacological Sciences, 16(9):309–316. [doi:10.1016/S0165-6147(00)89060-4]CrossRefPubMedGoogle Scholar
  20. Wang, M.C., Guan, X., Liang, S.P., 2007. The cross channel activities of spider neurotoxin huwentoxin-I on rat dorsal root ganglion neurons. Biochemical and Biophysical Research Communications, 357(3):579–583. [doi:10.1016/j.bbrc.2007.02.168]CrossRefPubMedGoogle Scholar
  21. Warmke, J.W., Reenan, R.A., Wang, P., Qian, S., Arena, J.P., Wang, J., Wunderler, D., Liu, K., Kaczorowski, G.J., van der Ploeg, L.H., et al., 1997. Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. The Journal of General Physiology, 110(2):119–133. [doi:10.1085/jgp.110.2.119]CrossRefPubMedGoogle Scholar
  22. Xiao, Y.C., Liang, S.P., 2003a. Purification and characterization of hainantoxin-V, a tetrodotoxin-sensitive sodium channel inhibitor from the venom of the spider Selenocosmia hainana. Toxicon, 41(6):643–650. [doi:10.1016/S0041-0101(02)00280-5]CrossRefPubMedGoogle Scholar
  23. Xiao, Y.C., Liang, S.P., 2003b. Inhibition of neuronal tetrodotoxin-sensitive Na+ channels by two spider toxins: hainantoxin-III and hainantoxin-IV. European Journal of Pharmacology, 477(1):1–7. [doi:10.1016/S0014-2999(03)02190-3]CrossRefPubMedGoogle Scholar
  24. Yu, F.H., Westenbroek, R.E., Silos-Santiago, I., McCormick, K.A., Lawson, D., Ge, P., Ferriera, H., Lilly, J., DiStefano, P.S., Catterall, W.A., et al., 2003. Sodium channel β4, a new disulfide-linked auxiliary subunit with similarity to β2. The Journal of Neuroscience, 23(20):7577–7585.PubMedGoogle Scholar
  25. Zlotkin, E., 1999. The insect voltage-gated sodium channel as target of insecticides. Annual Review of Entomology, 44(1):429–455. [doi:10.1146/annurev.ento.44.1.429]CrossRefPubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Food ScienceGuangdong Food and Drug Vocational CollegeGuangzhouChina
  2. 2.School of Life ScienceHunan Science and Technology UniversityXiangtanChina
  3. 3.Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life ScienceHunan Normal UniversityChangshaChina

Personalised recommendations