Journal of Zhejiang University SCIENCE B

, Volume 11, Issue 2, pp 94–101 | Cite as

A facile synthesis of 2-aryloxypyrimidine derivatives via a tandem reductive amination/intermolecular SNAr sequence

  • Hai-feng Wu
  • Pei-zhi Zhang
  • Jun Wu


A novel tandem reductive amination/intermolecular nucleophilic aromatic substitution (SNAr) sequence has been established for the synthesis of amine containing pyrimidine in formation of one carbon-oxygen and one carbon-nitrogen bonds in a one-pot fashion. Treatment of aldehyde with arylamine, 2-methanesulfonyl-4,6-dimethoxypyrimidine and sodium borohydride provides good overall yield. The p-toluenesulfonic acid (PTSA) can be used as activator and is generally needed in the reaction. Dioxane is the preferred reaction solvent, but reactions can also be carried out in tetrahydrofuran (THF), MeCN, toluene and dichloromethane. The procedure is carried out effectively in the presence of K2CO3. The reaction proceeds smoothly with aromatic aldehydes and arylamines possessing electron-donating or -withdrawing groups. This method can be applied to the synthesis of the oilseed rape herbicide and is superior to the classical one in several aspects: cutting out several purification steps, minimizing solvent use and chemical waste, and saving time. Its advantages such as operational convenience, high-efficient synthesis, and starting material availability make it a desirable method for preparing amines with molecular diversity and biological activity.

Key words

Reductive amination/intermolecular SNAr C-O and C-N bonds Amine Pyrimidine Herbicide 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Magid, A.F., Mehrman, S.J., 2006. A review on the use of sodium triacetoxyborohydride in the reductive amination of ketones and aldehydes. Org. Process Res. Dev., 10(5):971–1031. [doi:10.1021/op0601013]CrossRefGoogle Scholar
  2. Abdel-Magid, A.F., Carson, K.G., Harris, B.D., Maryanoff, C.A., Shah, R.D., 1996. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. studies on direct and indirect reductive amination procedures. J. Org. Chem., 61(11):3849–3862. [doi:10.1021/jo960057x]CrossRefPubMedGoogle Scholar
  3. Beshore, D.C., Dinsmore, C.J., 2002. Preparation of substituted piperazinones via tandem reductive amination-(N,N′-acyl transfer)-cyclization. Org. Lett., 4(7):1201–1204. [doi:10.1021/ol025644l]CrossRefPubMedGoogle Scholar
  4. Bunce, R.A., Nago, T., White, B., 2008. 6-nitro-1,2,3,4-tetrahydroquinolines by a tandem reductive amination-SNAr reaction. J. Heterocyclic Chem., 45(4):1155–1160. [doi:10.1002/jhet.5570450433]CrossRefGoogle Scholar
  5. Bunce, R.A., Nago, T., White, B., 2009. (±)-1,2-dialkyl-5-nitro-2,3-dihydro-1H-indoles by a tandem reductive amination-SNAr reaction. J. Heterocyclic Chem., 46(4): 629–634. [doi:10.1002/jhet.82]CrossRefGoogle Scholar
  6. Cho, B.T., Kang, S.K., 2005. Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions. Tetrahedron, 61(24):5725–5734. [doi:10.1016/j.tet.2005.04.039]CrossRefGoogle Scholar
  7. Dinsmore, C.J., Zartman, C.B., 2000. Efficient synthesis of substituted piperazinones via tandem reductive amination-cyclization. Tetrahedron Lett., 41(33):6309–6312. [doi:10.1016/S0040-4039(00)01063-7]CrossRefGoogle Scholar
  8. Gomez, S., Peters, J.A., Maschmeyer, T., 2002. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: mechanistic aspects and selectivity control. Adv. Synth. Catal., 344(10):1037–1057. [doi:10.1002/1615-4169(200212)344:10<1037::AID-ADSC1037>3.0.CO;2–3]CrossRefGoogle Scholar
  9. Guo, H.B., O’Doherty, G.A., 2008. De novo asymmetric syntheses of D-, L- and 8-epi-D-swainsonine. Tetrahedron, 64(2):304–313. [doi:10.1016/j.tet.2007.10.109]CrossRefPubMedGoogle Scholar
  10. Küenburg, B., Czollner, L., Fröhlich, J., Jordis, U., 1999. Development of a pilot scale process for the antialzheimer drug (−)-galanthamine using large-scale phenolic oxidative coupling and crystallisation-induced chiral conversion. Org. Process Res. Dev., 3(6):425–431. [doi:10.1021/op990019q]CrossRefGoogle Scholar
  11. Lev, S.V., Mynett, D.M., Koot, W.J., 1995. Solid phase synthesis of bicyclo[2.2.2]octane derivatives via tandem michael addition reactions and subsequent reductive amination. Synlett., (10):1017–1020. [doi:10.1055/s-1995-5164]Google Scholar
  12. Li, C.O., Villa-Marcos, B., Xiao, J.L., 2009. Metal-Brønsted acid cooperative catalysis for asymmetric reductive amination. J. Am. Chem. Soc., 131(20):6967–6969. [doi:10.1021/ja9021683]CrossRefPubMedGoogle Scholar
  13. Liu, Y.K., Mao, D.J., Lou, S.J., Qian, J.Q., Xu, Z.Y., 2009. Facile and efficient one-pot synthesis of 2-arylbenzoxazoles using hydrogen tetrachloroaurate as catalyst under oxygen atmosphere. J. Zhejiang Univ. Sci. B, 10(6):472–478. [doi:10.1631/jzus.B0820366]CrossRefPubMedGoogle Scholar
  14. Lu, L., Chen, J., Wu, J., Ling, W., Mao, L.S., Li, M.Z., Cai, X., Peng, W.L., Wu, Y., Wu, S.G., et al., 2002. New 2-pyrimidinyloxy-N-aryl-benzylamine Derivatives, Their Processes and Uses. WO Patent 0234724 A1.Google Scholar
  15. Nöth, J., Frankowski, K.J., Neuenswander, B., Aube, J., Reiser, O., 2008. Efficient synthesis of γ-lactams by a tandem reductive amination/lactamization sequence. J. Comb. Chem., 10(3):456–459. [doi:10.1021/cc700202c]CrossRefPubMedGoogle Scholar
  16. Posner, G.H., 1986. Multicomponent one-pot annulations forming three to six bonds. Chem. Rev., 86(5):831–844. [doi:10.1021/cr00075a007]CrossRefGoogle Scholar
  17. Selig, P., Herdtweck, E., Bach, T., 2009. Total synthesis of meloscine by a [2+2]-photocycloaddition/ring-expansion route. Chem. Eur. J., 15(14):3509–3525. [doi:10.1002/chem.200802383]CrossRefGoogle Scholar
  18. Tietze, L.F., 1996. Domino reactions in organic synthesis. Chem. Rev., 96(1):115–136. [doi:10.1021/cr950027e]CrossRefPubMedGoogle Scholar
  19. Tripathi, R.P., Verma, S.S., Pandey, J., Tiwari, V.K., 2008. Recent development on catalytic reductive amination and applications. Curr. Org. Chem., 12(13):1093–1115. [doi:10.2174/138527208785740283]CrossRefGoogle Scholar
  20. Wu, J., Cheng, J., Lu, L., 2006. N-(2-bromophenyl)-2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamine, a new selective postemergent herbicide for weed control in winter oilseed rape. J. Agric. Food Chem., 54(16):5954–5957. [doi:10.1021/jf061063p]CrossRefPubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of ChemistryZhejiang UniversityHangzhouChina
  2. 2.School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina

Personalised recommendations