Journal of Zhejiang University SCIENCE B

, Volume 9, Issue 10, pp 747–752 | Cite as

Functional genomics in the rice blast fungus to unravel the fungal pathogenicity

  • Junhyun Jeon
  • Jaehyuk Choi
  • Jongsun Park
  • Yong-Hwan Lee


A rapidly growing number of successful genome sequencing projects in plant pathogenic fungi greatly increase the demands for tools and methodologies to study fungal pathogenicity at genomic scale. Magnaporthe oryzae is an economically important plant pathogenic fungus whose genome is fully sequenced. Recently we have reported the development and application of functional genomics platform technologies in M. oryzae. This model approach would have many practical ramifications in design and implementation of upcoming functional genomics studies of filamentous fungi aimed at understanding fungal pathogenicity.

Key words

Functional genomics Magnaporthe oryzae Plant pathogenic fungus Pathogenicity Rice blast 

CLC number

S432 Q343 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, E.J., Galloway, L., Jackson, B., Schmoyer, D., Snoddy, J., 2004. MuTrack: a genome analysis system for large-scale mutagenesis in the mouse. BMC Bioinformatics, 5(1):11. [doi:10.1186/1471-2105-5-11]PubMedCrossRefGoogle Scholar
  2. Betts, M.F., Tucker, S.L., Galadima, N., Meng, Y., Patel, G., Li, L., Donofrio, N., Floyd, A., Nolin, S., Brown, D., et al., 2007. Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet. Biol., 44(10):1035–1049. [doi:10.1016/j.fgb.2007.05.001]PubMedCrossRefGoogle Scholar
  3. Chen, X., Stone, M., Schlagnhaufer, C., Romaine, C.P., 2000. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Environ. Microbiol., 66(10):4510–4513. [doi:10.1128/AEM.66.10.4510-4513.2000]PubMedCrossRefGoogle Scholar
  4. Choi, J., Park, J., Jeon, J., Chi, M.H., Goh, J., Yoo, S.Y., Park, J., Jung, K., Kim, H., Park, S.Y., et al., 2007. Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae. Mol. Microbiol., 66(2):371–382. [doi:10.1111/j.1365-2958.2007.05918.x]PubMedCrossRefGoogle Scholar
  5. Couch, B.C., Kohn, L.M., 2002. A multilocus gene genealogy concordant with host preference indicates segregation of new species, Magnaporthe oryzae from M. grisea. Mycologia, 94(4):683–693. [doi:10.2307/3761719]CrossRefGoogle Scholar
  6. Dean, R.A., 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol., 35(1):211–234. [doi:10.1146/annurev.phyto.35.1.211]PubMedCrossRefGoogle Scholar
  7. Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H., et al., 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434(7036):980–986. [doi:10.1038/nature03449]PubMedCrossRefGoogle Scholar
  8. de Groot, M.J., Bundock, P., Hooykaas, P.J., Beijersbergen, A.G., 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol., 16(9): 839–842. [doi:10.1038/nbt0998-839]PubMedCrossRefGoogle Scholar
  9. Donofrio, N., Rajagopalon, R., Brown, D., Diener, S., Windham, D., Nolin, S., Floyd, A., Mitchell, T., Galadima, N., Tucker, S., et al., 2005. ’PACLIMS’: a component LIM system for high-throughput functional genomic analysis. BMC Bioinformatics, 6(1):94. [doi:10.1186/1471-2105-6-94]PubMedCrossRefGoogle Scholar
  10. Foster, A.J., Jenkinson, J.M., Talbot, N.J., 2003. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. Embo. J., 22(2):225–235. [doi:10.1093/emboj/cdg018]PubMedCrossRefGoogle Scholar
  11. Hamer, L., Adachi, K., Montenegro-Chamorro, M.V., Tanzer, M.M., Mahanty, S.K., Lo, C., Tarpey, R.W., Skalchunes, A.R., Heiniger, R.W., Frank, S.A., et al., 2001. Gene discovery and gene function assignment in filamentous fungi. Proc. Natl. Acad. Sci. USA, 98(9):5110–5115. [doi:10.1073/pnas.091094198]PubMedCrossRefGoogle Scholar
  12. Howard, R.J., Ferrari, M.A., Roach, D.H., Money, N.P., 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA, 88(24):11281–11284. [doi:10.1073/pnas.88.24.11281]PubMedCrossRefGoogle Scholar
  13. Jeon, J., Park, S.Y., Chi, M.H., Choi, J., Park, J., Rho, H.S., Kim, S., Goh, J., Yoo, S., Choi, J., et al., 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet., 39(4):561–565. [doi:10.1038/ng2002]PubMedCrossRefGoogle Scholar
  14. Kankanala, P., Czymmek, K., Valent, B., 2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell, 19(2): 706–724. [doi:10.1105/tpc.106.046300]PubMedCrossRefGoogle Scholar
  15. Lacroix, B., Tzfira, T., Vainstein, A., Citovsky, V., 2006. A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet., 22(1):29–37. [doi:10.1016/j.tig.2005.10.004]PubMedCrossRefGoogle Scholar
  16. Li, G., Zhou, Z., Liu, G., Zheng, F., He, C., 2007. Characterization of T-DNA insertion patterns in the genome of rice blast fungus Magnaporthe oryzae. Curr. Genet., 51(4):233–243. [doi:10.1007/s00294-007-0122-5]PubMedCrossRefGoogle Scholar
  17. Meng, Y., Patel, G., Heist, M., Betts, M.F., Tucker, S.L., Galadima, N., Donofrio, N.M., Brown, D., Mitchell, T.K., Li, L., et al., 2007. A systematic analysis of T-DNA insertion events in Magnaporthe oryzae. Fungal Genet. Biol., 44(10):1050–1064. [doi:10.1016/j.fgb.2007.04.002]PubMedCrossRefGoogle Scholar
  18. Michielse, C.B., Hooykaas, P.J., van den Hondel, C.A., Ram, A.F., 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet., 48(1): 1–17. [doi:10.1007/s00294-005-0578-0]PubMedCrossRefGoogle Scholar
  19. Mullins, E.D., Kang, S., 2001. Transformation: a tool for studying fungal pathogens of plants. Cell Mol. Life Sci., 58(14):2043–2052. [doi:10.1007/PL00000835]PubMedCrossRefGoogle Scholar
  20. Ou, S.H., 1985. Rice Diseases, 2nd Ed. Commonwealth Mycological Institute, Kew, England.Google Scholar
  21. Piers, K.L., 1996. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA, 93(4): 1613–1618. [doi:10.1073/pnas.93.4.1613]PubMedCrossRefGoogle Scholar
  22. Rho, H.S., Kang, S., Lee, Y.H., 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells, 12:407–411.PubMedGoogle Scholar
  23. Sánchez, O., Navarro, R.E., Aguirre, J., 1998. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Mol. Gen. Genet., 258(1–2): 89–94. [doi:10.1007/s004380050710]PubMedGoogle Scholar
  24. Sesma, A., Osbourn, A.E., 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431(7008):582–586. [doi:10.1038/nature02880]PubMedCrossRefGoogle Scholar
  25. Sweigard, J.A., Carroll, A.M., Farrall, L., Chumley, F.G., Valent, B., 1998. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant Microbe Interact., 11(5):404–412. [doi:10.1094/MPMI.1998.11.5.404]PubMedCrossRefGoogle Scholar
  26. Talbot, N.J., 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol., 57(1):177–202. [doi:10.1146/annurev.micro.57.030502.090957]PubMedCrossRefGoogle Scholar
  27. Valent, B., 1990. Rice blast as a model system for plant pathology. Phytopathology, 80(1):33–36. [doi:10.1094/Phyto-80-33]CrossRefGoogle Scholar
  28. Villalba, F., Collemare, J., Landraud, P., Lambou, K., Brozek, V., Cirer, B., Morin, D., Bruel, C., Beffa, R., Lebrun, M.H., 2008. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet. Biol., 45(1): 68–75. [doi:10.1016/j.fgb.2007.06.006]PubMedCrossRefGoogle Scholar
  29. Winnenburg, R., Baldwin, T.K., Urban, M., Rawlings, C., Kohler, J., Hammond-Kosack, K.E., 2006. PHI-base: a new database for pathogen host interactions. Nucleic. Acids Res., 34(90001):D459–D464. [doi:10.1093/nar/gkj047]PubMedCrossRefGoogle Scholar
  30. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., et al., 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 285(5429):901–906. [doi:10.1126/science.285.5429.901]PubMedCrossRefGoogle Scholar
  31. Zeigler, R.S., Leong, S.A., Teeng, P.S., 1994. Rice Blast Disease. CAB International, Wallingford.Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Junhyun Jeon
    • 1
  • Jaehyuk Choi
    • 1
  • Jongsun Park
    • 1
  • Yong-Hwan Lee
    • 1
  1. 1.Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural BiomaterialsSeoul National UniversitySeoulKorea

Personalised recommendations