Journal of Zhejiang University SCIENCE B

, Volume 10, Issue 2, pp 93–102 | Cite as

Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells

  • Jin-bo Wang
  • Li-li Qi
  • Shui-di Zheng
  • Tian-xing Wu



To investigate the effects of curcumin on release of cytochrome c and expressions of Bcl-2, Bax, Bad, Bcl-xL, caspase-3, poly ADP-ribose polymerase (PARP), and survivin of HT-29 cells. Methods: HT-29 cells were treated with curcumin (0∼80 μmol/L) for 24 h. The release of cytochrome c from the mitochondria and the apoptosis-related proteins Bax, Bcl-2, Bcl-xL, Bad, caspase-3, PARP, and survivin were determined by Western blot analysis and their mRNA expressions by reverse transcriptase-polymerase chain reaction (RT-PCR).


Curcumin significantly induced the growth inhibition and apoptosis of HT-29 cells. A decrease in expressions of Bcl-2, Bcl-xL and survivin was observed after exposure to 10∼80 μmol/L curcumin, while the levels of Bax and Bad increased in the curcumin-treated cells. Curcumin also induced the release of cytochrome c, the activation of caspase-3, and the cleavage of PARP in a dose-dependent manner.


These data suggest that curcumin induced the HT-29 cell apoptosis possibly via the mitochondria-mediated pathway.

Key words

Curcumin Apoptosis Mitochondrial pathway HT-29 cells 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggarwal, S., Ichikawa, H., Takada, Y., Sandur, S.K., Shishodia, S., Aggarwal, B.B., 2006. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation. Mol. Pharmacol., 69(1):195–206. [doi:10.1124/mol.105.017400]PubMedGoogle Scholar
  2. Bae, J.H., Park, J.W., Kwon, T.K., 2003. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem. Biophys. Res. Commun., 303(4):1073–1079. [doi:10.1016/S0006-291X(03)00479-0]PubMedCrossRefGoogle Scholar
  3. Bhaumik, S., Jyothi, M.D., Khar, A., 2000. Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett., 483(1):78–82. [doi:10.1016/S0014-5793(00)02089-5]PubMedCrossRefGoogle Scholar
  4. Cao, J., Liu, Y., Jia, L., Zhou, H.M., Kong, Y., Yang, G., Jiang, L.P., Li, Q.J., Zhong, L.F., 2007. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic. Biol. Med., 43(6):968–975. [doi:10.1016/j.freeradbiomed.2007.06.006]PubMedCrossRefGoogle Scholar
  5. Chadalapaka, G., Jutooru, I., Chintharlapalli, S., Papineni, S., Smith, R., Li, X., Safe, S., 2008. Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res., 68(13):5345–5354. [doi:10.1158/0008-5472.CAN-07-6805]PubMedCrossRefGoogle Scholar
  6. Chen, C.Y., Liu, T.Z., Liu, Y.W., Tseng, W.C., Liu, R.H., Lu, F.J., Lin, Y.S., Chen, C.H., 2007. 6-Shogaol (alkanone from Ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J. Agric. Food Chem., 55(3):948–954. [doi:10.1021/jf0624594]PubMedCrossRefGoogle Scholar
  7. Chen, J.H., Cao, J.L., Chu, Y.L., Wang, Z.L., Yang, Z.T., Wang, H.L., 2008. T-2 toxin-induced apoptosis involving Fas, p53, Bcl-xL, Bcl-2, Bax and caspase-3 signaling pathways in human chondrocytes. J. Zhejiang Univ. Sci. B, 9(6):455–463. [doi:10.1631/jzus.B0820013]PubMedCrossRefGoogle Scholar
  8. Cory, S., Adams, J.M., 2002. The Bcl-2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2(9):647–656. [doi:10.1038/nrc883]PubMedCrossRefGoogle Scholar
  9. Desai, B.N., Myers, B.R., Schreiber, S.L., 2002. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA, 99(7):4319–4324. [doi:10.1073/pnas.261702698]PubMedCrossRefGoogle Scholar
  10. Gao, X., Kuo, J., Jiang, H., Deeb, D., Liu, Y., Divine, G., Chapman, R.A., Dulchavsky, S.A., Gautam, S.C., 2004. Immunomodulatory activity of curcumin: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochem. Pharmacol., 68(1):51–61. [doi:10.1016/j.bcp.2004.03.015]PubMedCrossRefGoogle Scholar
  11. Green, D.R., 2000. Apoptotic pathways: paper wraps stone blunts scissors. Cell, 102(1):1–4. [doi:10.1016/S0092-8674(00)00003-9]PubMedCrossRefGoogle Scholar
  12. Grishko, V., Rachek, L., Musiyenko, S., Ledoux, S.P., Wilson, G.L., 2005. Involvement of mtDNA damage in free fatty acid-induced apoptosis. Free Radic. Biol. Med., 38(6):755–762. [doi:10.1016/j.freeradbiomed.2004.11.023]PubMedCrossRefGoogle Scholar
  13. Khor, T.O., Gul, Y.A., Ithnin, H., Seow, H.F., 2006. A comparative study of the expression of Wnt-1, WISP-1, survivin and cyclin-D1 in colorectal carcinoma. Int. J. Colorectal Dis., 21(4):291–300. [doi:10.1007/s00384-005-0002-8]PubMedCrossRefGoogle Scholar
  14. Kluck, R.M., Bossy-Wetzel, E., Green, D.R., Newmeyer, D.D., 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 275(5303):1132–1136. [doi:10.1126/science.275.5303.1132]PubMedCrossRefGoogle Scholar
  15. Lam, A.K., Saleh, S., Smith, R.A., Ho, Y., 2008. Quantitative analysis of survivin in colorectal adenocarcinoma: increased expression and correlation with telomerase activity. Human Pathol., 39(8):1229–1233. [doi:10.1016/j.humpath.2008.01.001]CrossRefGoogle Scholar
  16. Li, F., Brattain, M.G., 2006. Role of the survivin gene in pathophysiology. Am. J. Pathol., 169(1):1–10. [doi:10.2353/ajpath.2006.060121]PubMedCrossRefGoogle Scholar
  17. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X., 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91(4):479–489. [doi:10.1016/S0092-8674(00)80434-1]PubMedCrossRefGoogle Scholar
  18. Moiseeva, E.P., Almeida, G.M., Jones, G.D.D., Manson, M.M., 2007. Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol. Cancer Ther., 6(11):3071–3079. [doi:10.1158/1535-7163.MCT-07-0117]PubMedCrossRefGoogle Scholar
  19. Newman, D.J., Cragg, G.M., Snader, K.M., 2003. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod., 66(7):1022–1037. [doi:10. 1021/np030096l]PubMedCrossRefGoogle Scholar
  20. Pan, M.H., Chang, W.L., Lin-Shiau, S.Y., Ho, C.T., Lin, J.K., 2001. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J. Agric. Food Chem., 49(3):1464–1474. [doi:10.1021/jf001129v]PubMedCrossRefGoogle Scholar
  21. Piwocka, K., Zabłocki, K., Wieckowski, M.R., Skierski, J., Feiga, I., Szopa, J., Drela, N., Wojtczak, L., Sikora, E., 1999. A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Exp. Cell Res., 249(2):299–307. [doi:10.1006/excr.1999.4480]PubMedCrossRefGoogle Scholar
  22. Porn-Ares, M.I., Chow, S.C., Slotte, J.P., Orrenius, S., 1997. Induction of apoptosis and potentiation of TNF and Fas-mediated apoptosis in U937 cells by the xanthogenate compound D609. Exp. Cell Res., 235(1):48–54. [doi:10.1006/excr.1997.3641]PubMedCrossRefGoogle Scholar
  23. Rashmi, R., Santhosh Kumar, T.R., Karunagaran, D., 2003. Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. FEBS Lett., 538(1–3):19–24. [doi:10.1016/S0014-5793(03)00099-1]PubMedCrossRefGoogle Scholar
  24. Reed, J.C., 1998. Bcl-2 family proteins. Oncogene, 17(25):3225–3236. [doi:10.1038/sj.onc.1202591]PubMedCrossRefGoogle Scholar
  25. Salvioli, S., Ardizzoni, A., Franceschi, C., Cossarizza, A., 1997. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess Δϕ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett., 411(1):77–82. [doi:10.1016/S0014-5793(97)00669-8]PubMedCrossRefGoogle Scholar
  26. Scott, D.W., Loo, G., 2004. Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis, 25(11):2155–2164. [doi:10.1093/carcin/ bgh239]PubMedCrossRefGoogle Scholar
  27. Sen, S., Sharma, H., Singh, N., 2005. Curcumin enhances Vinorelbine-mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem. Biophys. Res. Commun., 331(4):1245–1252. [doi:10.1016/j.bbrc.2005.04. 044]PubMedCrossRefGoogle Scholar
  28. Shang, T., Joseph, J., Hillard, C.J., Kalyanaraman, B., 2005. Death-associated protein kinase as a sensor of mitochondrial membrane potential: role of lysosome in mitochondrial toxin-induced cell death. J. Biol. Chem., 280(41):34644–34653. [doi:10.1074/jbc.M506466200]PubMedCrossRefGoogle Scholar
  29. Sharma, R.A., Gescher, A.J., Steward, W.P., 2005. Curcumin: the story so far. Eur. J. Cancer, 41(13):1955–1968. [doi:10.1016/j.ejca.2005.05.009]PubMedCrossRefGoogle Scholar
  30. Shi, M., Cai, Q., Yao, L., Mao, Y., Ming, Y., Ouyang, G., 2006. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol. Internat., 30(3):221–226. [doi:10.1016/j.cellbi.2005.10.024]CrossRefGoogle Scholar
  31. Shishodia, S., Amin, H.M., Lai, R., Aggarwal, B.B., 2005a. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol., 70(5):700–713. [doi:10. 1016/j.bcp.2005.04.043]PubMedCrossRefGoogle Scholar
  32. Shishodia, S., Sethi, G., Aggarwal, B.B., 2005b. Curcumin: getting back to the roots. Ann. N. Y. Acad. Sci., 1056(1):206–217. [doi:10.1196/annals.1352.010]PubMedCrossRefGoogle Scholar
  33. Song, G., Mao, Y.B., Cai, Q.F., Yao, L.M., Ouyang, G.L., Bao, D., 2005. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz. J. Med. Biol. Res., 38(12):1791–1798. [doi:10.1590/S0100-879X2005001200007]PubMedCrossRefGoogle Scholar
  34. Suzuki, A., Ito, T., Hayashida, M., Hayasaki, Y., Tuutomi, Y., Akahane, K., Nakano, T., Miura, M., Shiraki, K., 2000. Survivin initiates procaspase-3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene, 19(10):1346–1353. [doi:10.1038/ sj.onc.1203429]PubMedCrossRefGoogle Scholar
  35. Tan, H.Y., Liu, J., Wu, S.M., Luo, H.S., 2005. Expression of a novel apoptosis inhibitor-survivin in colorectal carcinoma. World J. Gastroenterol., 11(30):4689–4692.PubMedGoogle Scholar
  36. Wang, X., 2001. The expanding role of mitochondria in apoptosis. Genes Dev., 15(22):2922–2933.PubMedGoogle Scholar
  37. Watson, A.J.M., 2006. An overview of apoptosis and the prevention of colorectal cancer. Crit. Rev. Oncol. Hematol., 57(2):107–121. [doi:10.1016/j.critrevonc.2005.06. 005]PubMedCrossRefGoogle Scholar
  38. Woo, J.H., Kim, Y.H., Choi, Y.J., Kim, D.G., Lee, K.S., Bae, J.H., Mindo, S., Chang, J.S., Jeong, Y.J., Lee, Y.H., et al., 2003. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-xL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 24(7):1199–1208. [doi:10.1093/carcin/ bgg082]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Jin-bo Wang
    • 1
    • 2
  • Li-li Qi
    • 2
  • Shui-di Zheng
    • 2
  • Tian-xing Wu
    • 1
  1. 1.Department of Chemistry, College of ScienceZhejiang UniversityHangzhouChina
  2. 2.Ningbo Institute of TechnologyZhejiang UniversityNingboChina

Personalised recommendations