Journal of Zhejiang University SCIENCE B

, Volume 9, Issue 3, pp 210–220 | Cite as

Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives

  • Mohammad Iqbal Lone
  • Zhen-li He
  • Peter J. Stoffella
  • Xiao-e Yang


Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.

Key words

Environmental pollution Heavy metals Phytoremediation Soil Water 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alloway, B.J., 1995. Heavy Metals in Soils. Blackie Academic & Professional, London.Google Scholar
  2. Baker, A.J.M., McGrath, S.P., Reeves, R.D., Smith, J.C.A., 2000. Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils. In: Terry, N., Banuelos, G. (Eds.), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, p.85–108.Google Scholar
  3. Brooks, R.R., 1998. Plants that Hyperaccumulate Heavy Metals. CAN International, Wallington, p.379.Google Scholar
  4. Brown, S.L., Chaney, R.L., Scott Angle, J., 1995. Zinc and cadmium uptake by hyperaccumulator thlaspi-caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J., 59(1): 125–133.CrossRefGoogle Scholar
  5. Caille, B., Vauleon, C., Leyval, C., 2005. Metal transfer to plants grown on a dredged sediment: Use of radioactive isotope Hg-203 and titanium. Sci. Total Environ., 341(1–3):227–239. [doi:10.1016/j.scitotenv.2004.09.020]PubMedGoogle Scholar
  6. Chaney, R.L., Malik, M., Li, Y.M., Brown, S.L., Brewer, E.P., Scott Angle, J., Baker, A.J.M., 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol., 8(3):279–284. [doi:10.1016/S0958-1669(97)80004-3]PubMedCrossRefGoogle Scholar
  7. Cosio, C., Martinoia, E., Keller, C., 2004. Hyperaccumulaton of cadium and zinc in Thlaspi caerulescens and Arabidopsis hallri at leaf cellular level. Plant Physiol, 134(2): 716–725. [doi:10.1104/pp.103.031948]PubMedCrossRefGoogle Scholar
  8. Cunningham, S.C., Berti, W.R., 2000. Phytoextraction and Phytostabilization: Technical, Economic, and Regulatory Considerations of the Soil-Lead Issue. In: Terry, N., Banuelos, G. (Eds.), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, Florida, USA, p.359–376.Google Scholar
  9. Dos Santos, M.C., Lenzi, E., 2000. The use of aquatic macrophytes (Eichhornia crassipes) as a biological filter in the treatment of lead contaminated effluents. Environ. Technol., 21(6):615–622.Google Scholar
  10. Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R., Kochian, I.V., 1997. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual., 26(5): 1424–1430.Google Scholar
  11. Escarre, J., Lefebvre, C., Gruber, W., 2000. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: Implications for phytoremediation. New Phytologist, 145(3):429–437. [doi:10.1046/j.1469-8137.2000.00599.x]CrossRefGoogle Scholar
  12. Frey, B., Keller, C., Zierold, K., 2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ., 23(7):675–687. [doi:10.1046/j.1365-3040.2000.00590.x]CrossRefGoogle Scholar
  13. Gade, L.H., 2000. Highly polar metal—Metal bonds in “early-late” heterodimetallic complexes. Angewandte Chemie-International Edition, 39(15):2658–2678. [doi:10.1002/1521-3773(20000804)39:15〈2658::AID-ANIE2658〉3.0.CO;2-C]CrossRefGoogle Scholar
  14. Garbisu, C., Alkorta, I., 2001. Phytoextraction: A cost effective plant-based technology for the removal of metals from the environment. Biores. Technol., 77(3):229–236. [doi:10.1016/S0960-8524(00)00108-5]CrossRefGoogle Scholar
  15. Giller, K.E., Witter, E., McGrath, S.P., 1998. Toxicity of heavy metals to microorganism and microbial processes in agricultural soils: A review. Soil Biol. Bichem., 30(10–11):1389–1414. [doi:10.1016/S0038-0717(97)00270-8]CrossRefGoogle Scholar
  16. Gisbert, C., Ros, R., de Haro, A., Walker, D.J., Pilar Bernal, M., Serrano, R., Avino, J.N., 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun., 303(2):440–445. [doi:10.1016/S0006-291X(03)00349-8]PubMedCrossRefGoogle Scholar
  17. Gove, B., Hutchison, J.J., Young, S.D., Craigen, J., McGrath, S.P., 2002. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulation Thlaspi caerulescences. Int. J. Phytoremediation, 4(4):267–281. [doi:10.1080/15226510208500087]CrossRefGoogle Scholar
  18. Ingole, N.W., Bhole, A.G., 2003. Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol.-AQUA, 52(2): 119–128.Google Scholar
  19. Kabata-Pendias, A., 2001. Trace Elements in Soils and Plants, 3rd Ed. CRC Press, Boca Raton, Florida.Google Scholar
  20. Kidd, P.S., Monterroso, C., 2005. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain. Sci. Total Environ., 336(1–3):1–11. [doi:10.1016/j.scitotenv.2004.06.003]PubMedGoogle Scholar
  21. Knox, A.S., Gamerdinger, A.P., Adriano, D.C., Kolka, R.K., Kaplan, D.I., 1999. Sources and Practices Contributing to Soil Contamination. In: Adriano, D.C., Bollag, J.M., Frankenberg, W.T.Jr, Sims, R.C. (Eds.), Bioremediation of the Contaminated Soils. Agronomy Series No. 37, ASA, CSSA, SSSA, Madison, Wisconson, USA, p.53–87.Google Scholar
  22. Kozdrój, J., van Elsas, J.D., 2001. Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE finger printing and FAME profiling. Appl. Soil Ecol., 17(1):31–42. [doi:10.1016/S0929-1393(00)00130-X]CrossRefGoogle Scholar
  23. Kupper, H., Lombi, E., Zhao, F.J., 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212(1):75–84. [doi:10.1007/s004250000366]PubMedCrossRefGoogle Scholar
  24. Kupper, H., Lombi, E., Zhao, F.J., Wieshammer, G., McGrath, S.P., 2001. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Tulips goesingense. J. Exp. Bot., 52(365): 2291–2300. [doi:10.1093/jexbot/52.365.2291]PubMedCrossRefGoogle Scholar
  25. Kurek, E., Bollag, J.M., 2004. Microbial immobilization of cadmium released from CdO in the soil. Biogeochemistry, 69(2):227–239. [doi:10.1023/B:BIOG.0000031046.40036.df]CrossRefGoogle Scholar
  26. Landberg, T., Greger, M., 1996. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochem., 11(1–2):175–180. [doi:10.1016/0883-2927(95)00082-8]CrossRefGoogle Scholar
  27. Li, H., Cheng, F., Wang, A., Wu, T., 2005. Cadmium Removal from Water by Hydrophytes and Its Toxic Effects. Proc. of the International Symposium of Phytoremediation and Ecosystem Health. Sept. 10–13, 2005, Hangzhou, China.Google Scholar
  28. Li, T.Q., Yang, X.E., He, Z.L., Yang, J.Y., 2005a. Root morphology and Zn2+ uptake kinetics of the Zn hyperaccumulator of Sedum alfredii Hance. J. Integr. Plant Biol., 47(8):927–934. [doi:10.1111/j.1744-7909.2005.00117.x]CrossRefGoogle Scholar
  29. Li, T.Q., Yang, X.E., Jin, X.F., He, Z.L., Stoffella, P.J., Hu, Q.H., 2005b. Root response and metal accumulation in two contrasting ecotypes of Sedium alfredii Hance under lead and zinc stress. J. Environ. Sci. Health, 40(5): 1081–1096. [doi:10.1081/ESE-200056163]CrossRefGoogle Scholar
  30. Lindqvist, O., 1991. Mercury in the Swedish environment. Water Air Soil Bull., 55(1):23–32.Google Scholar
  31. Liu, Y., 2006. Shrinking Arable Lands Jeopardizing China’s Food Security.
  32. Liu, X.M., Wu, Q.T., Banks, M.K., 2005. Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int. J. Phytoremediation, 7(1):43–53. [doi:10.1080/16226510590915800]PubMedCrossRefGoogle Scholar
  33. Lombi, E., Zhao, F.J., Dunham, S.J., 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 145(1):11–20. [doi:10.1046/j.1469-8137.2000.00560.x]CrossRefGoogle Scholar
  34. Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kennely, E.D., 2001. A fern that hyperaccumulates arsenic. Nature, 409(6820):579. [doi:10.1038/35054664]PubMedCrossRefGoogle Scholar
  35. McGrath, S.P., Zhao, F.J., Lombi, E., 2001. Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil, 232(1/2):207–214. [doi:10.1023/A:1010358708525]CrossRefGoogle Scholar
  36. McKeehan, P., 2000. Brownfields: The Financial, Legislative and Social Aspects of the Redevelopment of Contaminated Commercial and Industrial Properties.
  37. Nriagu, J.O., 1994. Arsenic in the Environment. 1. Cycling and Characterization. John Wiley and Sons, New York.Google Scholar
  38. Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air water and soils by trace metals. Nature, 333(6169):134–139. [doi:10.1038/333134a0]PubMedCrossRefGoogle Scholar
  39. Pollard, A.J., Powell, K.D., Harper, F.A., Smith, J.A.C., 2002. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci., 21(6):539–566. [doi:10.1080/0735-260291044359]CrossRefGoogle Scholar
  40. Prasad, M.N.V., Freitas, H.M.D., 2003. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol., 93(1):285–321.Google Scholar
  41. Puschenreiter, M., Wieczorek, S., Horak, O., Wenzel, W.W., 2003. Chemical Changes in the rhizospher of metal hyperaccumulator and excluder Thlaspi species. J. Plant Nutri Soil Sci., 166(5):579–584. [doi:10.1002/jpln.200321155]CrossRefGoogle Scholar
  42. Ragnarsdottir, K.V., Hawkins, D., 2005. Trace metals in soils and their relationship with scrapie occurrence. Geochimica et Cosmochimica Acta, 69(10):A196–A196.Google Scholar
  43. Raskin, I., Gleba, D., Smith, R., 1996. Using plant seedlings to remove heavy metals from water. Plant Physiol., 111(2): 552–552.Google Scholar
  44. Raskin, I., Smith, R.D., Salt, D.E., 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol., 8(2):221–226. [doi:10.1016/S0958-1669(97)80106-1]PubMedCrossRefGoogle Scholar
  45. Reeves, R.D., 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil, 249(1): 57–65. [doi:10.1023/A:1022572517197]CrossRefGoogle Scholar
  46. Robinson, B.H., Leblanc, M., Petit, D., 1998. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil, 203(1):47–56. [doi:10.1023/A:1004328816645]CrossRefGoogle Scholar
  47. Salido, A.L., Hastly, K.L., Lim, J.M., Butcher, D.J., 2003. Phytoremediation of arsenic and lead in contaminated soils using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int. J. Phytoremediation, 5(2):89–103. [doi:10.1080/713610173]PubMedCrossRefGoogle Scholar
  48. Salt, D.E., Blaylock, M., kumar, P.B.A.N., Dushenkov, V., Ensley, B.D., Chet, L., Raskin, L., 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13(2):468–474.PubMedGoogle Scholar
  49. Salt, D.E., Smith, R.D., Raskin, L., 1998. Phytoremediation. Ann. Rev. Plant Phys. Plant Mol. Biol., 49(1):643–668. [doi:10.1146/annurev.arplant.49.1.643]CrossRefGoogle Scholar
  50. Sarret, G., Saumitou-Laprade, P., Bert, V., 2002. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol., 130(4):1815–1826. [doi:10.1104/pp.007799]PubMedCrossRefGoogle Scholar
  51. Schalscha, E., Ahumada, I., 1998. Heavy metals in rivers and soils of central chile. Water Sci. Technol., 37(8):251–255. [doi:10.1016/S0273-1223(98)00255-8]CrossRefGoogle Scholar
  52. Schmidt, U., 2003. Enhancing phytoremediation: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual., 32: 1939–1954.PubMedGoogle Scholar
  53. Schwartz, C., Echevarria, G., Morel, J.L., 2003. Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil, 249(1):27–35. [doi:10.1023/A:1022584220411]CrossRefGoogle Scholar
  54. Scott Angle, J., Baker, A.J.M., Whiting, S.N., Chaney, R.L., 2003. Soil moisture effect on uptake of metals by Thlaspi, Alyssum and Berkheya. Plant Soil, 256(1):325–332.CrossRefGoogle Scholar
  55. Seaward, M.R.D., Richardson, D.H.S., 1990. Atmospheric Sources of Metal Pollution and Effects on Vegetation. In: Shaw, A.J. (Ed.), Heavy Metal Tolerance in Plants: Evolutionary. Aspects, CRC Press, Florida, p.75–92.Google Scholar
  56. Sneller, F.E.C., van Heerwaarden, L.M., Schat, H., 2000. Toxicity, metal uptake, and accumulation of phytochelatins in silene vulgaris exposed to mixtures of cadmium and arsenate. Environ. Toxicol. Chem., 19(12):2982–2986. [doi:10.1897/1551-5028(2000)019〈2982:TMUAAO〉2.0.CO;2]CrossRefGoogle Scholar
  57. Uneo, D., Zhao, F.J., Ma, J.F., 2004a. Interaction between Cd and Zn in relation to their hyperacculation in Thlaspi caerulescens. Soil Sci. Plant Nutri., 50(4):591–597.Google Scholar
  58. Uneo, D., Zhao, F.J., Shen, R.F., Ma, J.F., 2004b. Cadmium and zinc accumulation by the hyperaccumulattor Thlaspi caerulescens from soils enriched with insoluble metal compounds. Soil Sci. Plant Nutr., 50(3–4):511–515.Google Scholar
  59. Walsh, P.R., Duce, R.A., Finishing, J.I., 1979. Consideration of the enrichment, sources, and flux of arsenic in the troposphere. J. Geophysical. Res., 84:1719–1726.CrossRefGoogle Scholar
  60. Wang, Q., Cui, Y., Dong, Y., 2002. Phytoremediation of polluted waters potential and prospects of wetland plants. Acta Biotechnol., 22(1–2):199–208. [doi:10.1002/1521-3846(200205)22:1/2〈199::AID-ABIO199〉3.0.CO;2-T]CrossRefGoogle Scholar
  61. Welch, R.M., Norvell, W.A., 1993. Growth and nutrient-uptake by barley (hordeum-vulgare l cv herta)—studies using an n-(2-ydroxyethyl) ethylenedinitrilotriacetic acid buffered nutrient solution technique. 2. Role of zinc in the uptake and root leakage of mineral nutrients. Plant Physiol., 101(2):627–631.PubMedGoogle Scholar
  62. Wenzel, W.W., Bunkowski, M., Puschenreiter, M., Horak, O., 2002. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ. Poll., 123(1):131–138.CrossRefGoogle Scholar
  63. Whiting, N.S., Leake, R.J., McGrath, P.S., baker, M.J.A., 2000. Positive response to Zn and CD by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol., 145(2):199–210. [doi:10.1046/j.1469-8137.2000.00570.x]CrossRefGoogle Scholar
  64. Xiong, Y.H., Yang, X.E., Ye, Z.Q., He, Z.L., 2004. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of sedum alfredii hance. J. Environ. Sci. Health Part A, 39(11–12):2925–2940.Google Scholar
  65. Yang, X.E., Ye, H.B., Long, X.X., He, B., He, Z.L., Stoffella, P.J., Calvert, D.V., 2004. Uptake and accumulation of cadmium and Zinc by Sedum alfredii Hance at different Cd/Zn supply levels. J. Plant Nutr., 27(11):1963–1977. [doi:10.1081/PLN-200030082]CrossRefGoogle Scholar
  66. Yang, X.E., Li, T.Q., Yang, J.C., He, Z.L., Lu, L.L., Meng, F.H., 2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224(1): 185–195. [doi:10.1007/s00425-005-0194-8]PubMedCrossRefGoogle Scholar
  67. Zaranyika, M.F., Ndapwadza, T., 1995. Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth (Eichhornia crassipes) in Mukuvisi and Manyame Rivers, Zimbabwe. J. Environ. Sci. Health Part A, 30(1):157–169.Google Scholar
  68. Zayed, A., Gowthaman, S., Terry, N., 1998. Phytoremediation of trace elements by wetland plants: 1. Duck weed. J. Environ. Qual., 27(3):715–721.Google Scholar
  69. Zhang, W.H., Cai, Y., Tu, C., Ma, L.Q., 2002. Arsenic speciation and distribution in an arsenic hyper accumulating plant. Sci. Total Environ., 300(1–3):167–177. [doi:10.1016/S0048-9697(02)00165-1]PubMedGoogle Scholar
  70. Zhang, L., Tian, S., Ye, Z., Yang, X., Peng, H., 2005. The Efficiency of Heavy Metal Removal from Contaminated Water by Elsholtzia argi and Elsholtzia splendens. Proc. of the International Symposium of Phytoremediation and Ecosystem Health. Sept. 10–13, 2005, Hangzhou, China.Google Scholar
  71. Zhao, F.J., Lombi, E., Breedon, T., 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ., 23(5):507–514. [doi:10.1046/j.1365-3040.2000.00569.x]CrossRefGoogle Scholar
  72. Zhao, F.J., Dunham, S.J., McGrath, S.P., 2002. Arsenic hyper accumulation by different fern species. New Phytologist, 156(1):27–31. [doi:10.1046/j.1469-8137.2002.00493.x]CrossRefGoogle Scholar
  73. Zhu, Y.L., Zayed, A.M., Qian, J.H., De Souza, M., Terry, N., 1999. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual., 28(1):339–344.CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press 2008

Authors and Affiliations

  • Mohammad Iqbal Lone
    • 1
    • 2
  • Zhen-li He
    • 1
    • 3
  • Peter J. Stoffella
    • 1
  • Xiao-e Yang
    • 3
  1. 1.Indian River Research and Education CenterUniversity of Florida, Institute of Food and Agricultural SciencesFort PierceUSA
  2. 2.University of Arid AgricultureRawalpindiPakistan
  3. 3.MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Natural Resources and Environmental SciencesZhejiang UniversityHangzhouChina

Personalised recommendations