Advertisement

Journal of Zhejiang University SCIENCE B

, Volume 9, Issue 2, pp 90–92 | Cite as

Mitochondrion and its related disorders: Making a comeback

  • Xian-ning Zhang
  • Ming Qi
Short Review

Abstract

The great majority of genetic disorders are caused by defects in the nuclear genome. However, some significant diseases are the result of mitochondrial mutations. Because of the unique features of the mitochondria, these diseases display characteristic modes of inheritance and a large degree of phenotypic variability. Recent studies have suggested that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer.

Key words

Mitochondria Mitochondrial disorder Mutation 

Document code

CLC number

R394 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, R.M., Kubacka, I., Chinnery, P.F., Lightowlers, R.N., Turnbull, D.M., Howell, N., 1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet., 23(2):147. [doi:10.1038/13779]PubMedCrossRefGoogle Scholar
  2. Calvo, S., Jain, M., Xie, X., Sheth, S.A., Chang, B., Goldberger, O.A., Spinazzola, A., Zeviani, M., Carr, S.A., Mootha, V.K., 2006. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet., 38(5):576–582. [doi:10.1038/ng1776]PubMedCrossRefGoogle Scholar
  3. Chan, D.C., 2006. Mitochondria: Dynamic organelles in disease, aging, and development. Cell, 125(7):1241–1252. [doi:10.1016/j.cell.2006.06.010]PubMedCrossRefGoogle Scholar
  4. Hudson, G., Keers, S., Man, P.Y., Griffiths, P., Huoponen, K., Savontaus, M.L., Nikoskelainen, E., Zeviani, M., Carrara, F., Horvath, R., et al., 2005. Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am. J. Hum. Genet., 77(6):1086–1091. [doi:10.1086/498176]PubMedCrossRefGoogle Scholar
  5. Liang, M.H., Wong, L.J., 1998. Yield of mtDNA mutation analysis in 2000 patients. Am. J. Med. Genet., 77(5):395–400. [doi:10.1002/(SICI)1096-8628(19980605)77:5<395::AID-AJMG8>3.0.CO;2-M]PubMedCrossRefGoogle Scholar
  6. Luoma, P., Melberg, A., Rinne, J.O., Kaukonen, J.A., Nuponen, N.N., Chalmers, R.M., Oldfors, A., Rautakorpi, I., Peltonen, L., Majamaa, K., et al., 2004. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: Clinical and molecular genetic study. Lancet, 364(9437):875–882. [doi:10.1016/S0140-6736(04)16983-3]PubMedCrossRefGoogle Scholar
  7. Pospisilik, J.A., Knauf, C., Joza, N., Benit, P., Orthofer, M., Cani, P.D., Ebersberger, I., Nakashima, T., Sarao, R., Neely, G., et al., 2007. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell, 131(3):476–491. [doi:10.1016/j.cell.2007.08.047]PubMedCrossRefGoogle Scholar
  8. Ryan, M.T., Hoogenraad, N.J., 2007. Mitochondrial-nuclear communications. Annu. Rev. Biochem., 76(1):701–722. [doi:10.1146/annurev.biochem.76.052305.091720]PubMedCrossRefGoogle Scholar
  9. Schwartz, M., Vissing, J., 2002. Paternal inheritance of mitochondrial DNA. N. Engl. J. Med., 347(8):576–580. [doi:10.1056/NEJMoa020350]PubMedCrossRefGoogle Scholar
  10. Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., Bohlooly, Y.M., Gidlof, S., Oldfors, A., Wibom, R., Törnell, J., Jacobs, H.T., Larsson, N.G., 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 429(6990):417–423. [doi:10.1038/nature02517]PubMedCrossRefGoogle Scholar
  11. Wallace, D.C., 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet., 39(1):359–407. [doi:10.1146/annurev.genet.39.110304.095751]PubMedCrossRefGoogle Scholar
  12. Wallace, D.C., 2007. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu. Rev. Biochem., 76(1):781–821. [doi:10.1146/annurev.biochem.76.081205.150955]PubMedCrossRefGoogle Scholar
  13. Wallace, D.C., Singh, G., Lott, M.T., Hodge, J.A., Schurr, T.G., Lezza, A.M., Elsas, L.J. 2nd, Nikoskelainen, E.K., 1988. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science, 242(4884):1427–1430. [doi:10.1126/science.3201231]PubMedCrossRefGoogle Scholar
  14. Xia, C., Meng, Q., Liu, L.Z., Rojanasakul, Y., Wang, X.R., Jiang, B.H., 2007. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res., 67(22):10823–10830. [doi:10.1158/0008-5472.CAN-07-0783]PubMedCrossRefGoogle Scholar
  15. Zeviani, M., Carelli, V., 2007. Mitochondrial disorders. Curr. Opin. Neurol., 20(5):564–571.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Zhejiang University-Adinovo Center for Genetic and Genomic MedicineZhejiang UniversityHangzhouChina
  2. 2.James D. Watson Institute of Genome SciencesZhejiang UniversityHangzhouChina
  3. 3.National Education Base for Basic Medical SciencesZhejiang UniversityHangzhouChina

Personalised recommendations