Journal of Zhejiang University SCIENCE B

, Volume 9, Issue 2, pp 132–140 | Cite as

Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species

  • Jin-yao Li
  • Xiao-wei He
  • Li Xu
  • Jie Zhou
  • Ping Wu
  • Hui-xia Shou
  • Fu-chun Zhang


A novel vacuolar Na+/H+ exchanger, CgNHX1, was cloned from a halophytic species Chenopodium glaucum by using reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) technique. Sequence alignment and phylogenetic analysis of 22 NHX genes from GenBank as well as the new CgNHX1 gene indicate that NHX genes shared a great degree of similarity, regardless of their glycophytic or halophytic origin. Expression of the CgNHX1 gene was induced by NaCl and peaked at 400 mmol/L NaCl. Overexpression of NHX1 genes in rice enhanced their tolerance to salt stress. However, there is no significant difference in salt tolerance among the transgenic rice plants overexpressing the NHX1 genes from either glycophytic or halophytic species. The Na+ content of both the wild type (WT) and transgenic plants increased when exposed to 50 and 100 mmol/L NaCl, and the Na+ concentration in transgenic plants was marginally higher than that of WT. Our data demonstrate that the overexpression of the NHX1 gene from either glycophytic or halophytic species resulted in the enhanced tolerance to salt stress at a similar level, suggesting that NHX gene per se might not be the reason accounting for the difference in salt tolerance between glycophytes and halophytes.

Key words

NHX gene Rice transformation Salt stress Tolerance 

Document code

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apse, M.P., Aharon, G.S., Snedden, W.A., Blumwald, E., 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285(5431):1256–1258. [doi:10.1126/science.285.5431.1256]PubMedCrossRefGoogle Scholar
  2. Apse, M.P., Sottosanto, J.B., Blumwald, E., 2003. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J., 36(2):229–239. [doi:10.1046/j.1365-313X.2003.01871.x]PubMedCrossRefGoogle Scholar
  3. Aronson, P.S., 1985. Kinetic properties of the plasma membrane Na+-H+ exchanger. Ann. Rev. Physiol., 47(1): 545–560. [doi:10.1146/]CrossRefGoogle Scholar
  4. Brini, F., Hanin, M., Mezghani, I., Berkowitz, G.A., Masmoudi, K., 2007. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot., 58(2):301–308. [doi:10.1093/jxb/erl251]PubMedCrossRefGoogle Scholar
  5. Chauhan, S., Forsthoefel, N., Ran, Y., Quigley, F., Nelson, D.E., Bohnert, H.J., 2000. Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J., 24(4):511–522. [doi:10.1046/j.1365-313x.2000.00903.x]PubMedCrossRefGoogle Scholar
  6. Chen, S., Jin, W., Wang, M., Zhang, F., Zhou, J., Jia, Q., Wu, Y., Liu, F., Wu, P., 2003. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J., 36(1):105–113. [doi:10.1046/j.1365-313X.2003.01860.x]PubMedCrossRefGoogle Scholar
  7. Counillon, L., Pouyssegur, J., Reithmeier, R.A., 1994. The Na+/H+ exchanger NHE-1 possesses N-and O-linked glycosylation restricted to the first N-terminal extracellular domain. Biochemistry, 33(34):10463–10469. [doi:10.1021/bi00200a030]PubMedCrossRefGoogle Scholar
  8. Flowers, T.J., Troke, P.F., Yeo, A.R., 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol., 28(1):89–121. [doi:10.1146/annurev.pp.28.060177.000513]CrossRefGoogle Scholar
  9. Flowers, T.J., Haijibagheri, M.A., Clipson, N.J.W., 1986. Halophytes. Quart. Rev. Biol., 61(3):313–337. [doi:10.1086/415032]CrossRefGoogle Scholar
  10. Fukuda, A., Nakamura, A., Tanaka, Y., 1999. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim. Biophys. Acta, 1446(1):149–155.PubMedGoogle Scholar
  11. Gaxiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., Fink, G.R., 1999. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA, 96(4):1480–1485. [doi:10.1073/pnas.96.4.1480]PubMedCrossRefGoogle Scholar
  12. Greenway, H., Munns, R., 1980. Mechanisms of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol., 31(1): 149–190. [doi:10.1146/annurev.pp.31.060180.001053]CrossRefGoogle Scholar
  13. Hamada, A., Shono, M., Xia, T., Ohta, M., Hayashi, Y., Tanaka, A., Hayakawa, T., 2001. Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol. Biol., 46(1):35–42. [doi:10.1023/A:1010603222673]PubMedCrossRefGoogle Scholar
  14. Hofmann, K.S.W., 1993. TM base—A database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler, 347:166–172.Google Scholar
  15. Jones, R.G.W., 1981. Salt Tolerance. In: Johnson, C.B. (Ed.), Physiological Processes. Limiting Plant Productivity. Butterworths, Iondon, p.271–292.Google Scholar
  16. Li, J.Y., Zhang, F.C., Ma, J., Cai, L., Bao, Y.G., Wang, B., 2003. Using RT-PCR to amplify the NHX gene fragment in Atriplex dimorphostegia. Plant Physiol. Commun., 6(6):585–588 (in Chinese).Google Scholar
  17. Ma, X.L., Zhang, Q., Shi, H.Z., Zhu, J.K., Zhao, Y.X., Ma, C.L., Zhang, H., 2004. Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress. Biol. Plantarum, 48(2):219–225. [doi:10.1023/B:BIOP.0000033448.96998.44]CrossRefGoogle Scholar
  18. Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., Hayakawa, T., 2002. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett., 532(3):279–282. [doi:10.1016/S0014-5793(02)03679-7]PubMedCrossRefGoogle Scholar
  19. Orlowski, J., Grinstein, S., 1997. Na+/H+ exchangers of mammalian cells. J. Biol. Chem., 272(36):22373–22376. [doi:10.1074/jbc.272.36.22373]PubMedCrossRefGoogle Scholar
  20. Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., Zhu, J.K., 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA, 99(12):8436–8441. [doi:10.1073/pnas.122224699]PubMedCrossRefGoogle Scholar
  21. Quintero, F.J., Blatt, M.R., Pardo, J.M., 2000. Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett., 471(2–3):224–228. [doi:10.1016/S0014-5793(00)01412-5]PubMedCrossRefGoogle Scholar
  22. Shi, H., Zhu, J.K., 2002. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol. Biol., 50(3):543–550. [doi:10.1023/A:1019859319617]PubMedCrossRefGoogle Scholar
  23. Shi, H., Ishitani, M., Kim, C., Zhu, J.K., 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA, 97(12):6896–6901. [doi:10.1073/pnas.120170197]PubMedCrossRefGoogle Scholar
  24. Shi, H., Quintero, F.J., Pardo, J.M., Zhu, J.K., 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 14(2):465–477. [doi:10.1105/tpc.010371]PubMedCrossRefGoogle Scholar
  25. Shi, H., Lee, B.H., Wu, S.J., Zhu, J.K., 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol., 21(1):81–85. [doi:10.1038/nbt766]PubMedCrossRefGoogle Scholar
  26. Xiong, L.M., Zhu, J.K., 2002. Salt Tolerance. In: Somerville, C.R., Meyerowitz, E.M. (Eds.), The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, p.1–22. [doi:10.1199/tab.0048]Google Scholar
  27. Xu, M., Zhu, L., Shou, H., Wu, P., 2005. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol., 46(10):1674–1681. [doi:10.1093/pcp/pci183]PubMedCrossRefGoogle Scholar
  28. Zhang, H.X., Blumwald, E., 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol., 19(8):765–768. [doi:10.1038/90824]PubMedCrossRefGoogle Scholar
  29. Zhu, J.K., 2001. Plant salt tolerance. Trends Plant Sci., 6(2):66–71. [doi:10.1016/S1360-1385(00)01838-0]PubMedCrossRefGoogle Scholar
  30. Zorb, C., Noll, A., Karl, S., Leib, K., Yan, F., Schubert, S., 2005. Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J. Plant Physiol., 162(1):55–66. [doi:10.1016/j.jplph.2004.03.010]PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Molecular Biology, College of Life Science and TechnologyXinjiang UniversityUrumqiChina

Personalised recommendations