Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 5, pp 331–345 | Cite as

Rocking of a rigid block freestanding on a flat pedestal

  • Antonio Gesualdo
  • Antonino Iannuzzo
  • Michela Monaco
  • Francesco Penta
Article
  • 4 Downloads

Abstract

The seismic protection of objects contained within museums is a topic of great interest, especially with reference to how they are displayed or stored. This problem is the same as that of a large class of non-structural components, such as mechanical and electrical hospital and laboratory equipment that could lose their functionality because of earthquakes. Statues and ceramics simply supported on the floor represent a significant set of case. In some cases, like the Bronzes of Riace, isolation systems have been developed. However, in general museum exhibits are not equipped with devices capable of mitigating the oscillations induced by possible earthquakes. The case study of a marble statue placed on a freestanding squat rigid pedestal is examined. The system of algebraic differential equations governing the problem has been derived and included in an ad-hoc numerical procedure. It is shown that the insertion of a squat rigid body with low frictional resistance at the lower interface with the floor, and high frictional resistance at the upper interface with the artifact significantly reduces the amplitude of the rocking response. As a result the artifact rocks without sliding on the rigid base that slides without rocking with respect to the floor. The numerical analysis performed can be a tool to help in the choice of the optimal friction values in the surfaces of the flat block, designed as a simple isolation system.

Key words

Rigid body Isolation Statues Friction Rocking dynamics 

水平支座上独立式刚性块的摆动模型

摘要

目的

本研究集中探讨水平支座上独立放置简单叠合的双刚性块的动力学行为,旨在通过构建并求解合适的动力学数值模型以助于设计可广泛适用于博物馆、实验室和医院的保护小型艺术品或装置的隔振系统。

创新点

1. 研究对象为两个叠合在一起的刚性块,较以往同类问题中的单一刚性块,更具现实意义;2. 同时研究了刚性块的摆动和滑动两类运动模式。

方法

1. 基于达朗贝尔原理构建摆动控制方程,分析单刚体情形下的摆动并利用数值手段描述其滑动状态;2. 在分析单刚体的基础上构建双刚体控制方程组并对其进行数值求解。

结论

1. 通过研究大理石雕塑置于蹲式刚性基底上且基底独立放置在移动地面上的情形发现,相比于滑动,雕塑自身的摆动是造成其损坏的主要原因;2. 在某些情况下,刚体表面延迟的存在可以避免细长刚性块的翻转,尤其是对于那些细长的摇摆块体以及上部块体质量增加的情形;3. 本文提出的数值分析可以成为优化简易隔振系统的一个有效工具。

关键词

刚体 隔振 雕塑 摩擦 摇摆动力学 

CLC number

O32 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbabian MS, Ginell WS, Masri FS, et al., 1991. Evaluation of earthquake damage mitigation methods for museum objects. Studies in Conservation, 36(2):111–120. https://doi.org/10.2307/1506335 Google Scholar
  2. Aslam M, Scalise DT, Godden WG, 1980. Earthquake rocking response on rigid bodies. Journal of Structural Division, 106(2):377–392.Google Scholar
  3. Augusti G, Sinopoli A, 1992. Modelling the dynamics of large block structures. Meccanica, 27(3):195–211.CrossRefMATHGoogle Scholar
  4. Cennamo C, Gesualdo A, Monaco M, 2017. Shear plastic constitutive behaviour for near-fault ground motion. Journal of Engineering Mechanics, 143(9):04017086. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001300 CrossRefGoogle Scholar
  5. Chierchiello G, Gesualdo A, Iannuzzo A, et al., 2015. Structural modeling and conservation of single columns in archaeological areas. Proceedings of the XIV International Forum ‘Le vie dei mercanti’, p.2012–2020.Google Scholar
  6. Conte E, Dente G, 1989. An analytical solution for Newmark’s sliding block. Soils & Foundations, 29(3):152–156. https://doi.org/10.3208/sandf1972.29.3_152 CrossRefGoogle Scholar
  7. de Canio G, 2012. Marble devices for the base isolation of the two Bronzes of Riace: a proposal for the David of Michelangelo. Proceedings of the XV World Conference on Earthquake Engineering-WCEE, p.24–28. https://doi.org/10.13140/2.1.2483.9047 Google Scholar
  8. de Jong MJ, Dimitrakopoulos EG, 2014. Dynamically equivalent rocking structures. Earthquake Engineering & Structural Dynamics, 43(10):1543–1564. https://doi.org/10.1002/eqe.2410 CrossRefGoogle Scholar
  9. Di Egidio A, Contento A, 2009. Base isolation of slide-rocking non-symmetric rigid blocks under impulsive and seismic excitations. Engineering Structures, 31(11):2723–2734. https://doi.org/10.1016/j.engstruct.2009.06.021 CrossRefGoogle Scholar
  10. Erdik M, Durukal E, Ertürk N, et al., 2010. Earthquake risk mitigation in Istanbul museums. Natural Hazards, 53(1): 97–108. https://doi.org/10.1007/s11069-009-9411-2 CrossRefGoogle Scholar
  11. Gesualdo A, Monaco M, 2015. Constitutive behaviour of quasi-brittle materials with anisotropic friction. Latin American Journal of Solids and Structures, 12(4):695–710. https://doi.org/10.1590/1679-78251345 CrossRefGoogle Scholar
  12. Gesualdo A, Iannuzzo A, Monaco M, et al., 2014. Dynamic analysis of freestanding rigid blocks. Civil-Comp Proceedings.Google Scholar
  13. Gesualdo A, Cennamo C, Fortunato A, et al., 2016a. Equilibrium formulation of masonry helical stairs. Meccanica, 52(8):1963–1974. https://doi.org/10.1007/s11012-016-0533-9 MathSciNetCrossRefGoogle Scholar
  14. Gesualdo A, Iannuzzo A, Guadagnuolo M, et al., 2016b. Numerical analysis of rigid body behaviour. Applied Mechanics and Materials, 847:240–247. https://doi.org/10.4028/www.scientific.net/AMM.847.240 CrossRefGoogle Scholar
  15. Gesualdo A, Iannuzzo A, Penta F, et al., 2017. Homogenization of a Vierendeel girder with elastic joints into an equivalent polar beam. Journal of Mechanics of Materials and Structures, 12(4):485–504. https://doi.org/10.2140/jomms.2017.12.485 MathSciNetCrossRefGoogle Scholar
  16. Guadagnuolo M, Monaco M, 2009. Out of plane behaviour of unreinforced masonry walls. In: Protection of Historical Buildings. Taylor & Francis Group, New York, USA, p.1177–1180.Google Scholar
  17. Hogan SJ, 1989. On the dynamics of rigid-block motion under harmonic forcing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 425(1869):441–476. https://doi.org/10.1098/rspa.1989.0114 MathSciNetCrossRefGoogle Scholar
  18. Housner WG, 1963. The behaviour of inverted pendulum structures during earthquake. Bulletin of the Seismological Society of America, 53(2):403–417.Google Scholar
  19. Ishiyama Y, 1982. Motions of rigid bodies and criteria for overturning by earthquake excitations. Earthquake Engineering & Structural Dynamics, 10(5):635–650. https://doi.org/10.1002/eqe.4290100502 CrossRefGoogle Scholar
  20. Konstantinidis D, Makris N, 2010. Experimental and analytical studies on the response of a 1/4 scale model of freestanding laboratory equipment subjected to strong earthquake shaking. Bulletin of Earthquake Engineering, 8(6):1457–1477. https://doi.org/10.1007/s10518-010-9192-8 CrossRefGoogle Scholar
  21. Kounadis AN, 2015. On the rocking-sliding instability of rigid blocks under ground excitation: some new findings. Soil Dynamics and Earthquake Engineering, 75:246–258. https://doi.org/10.1016/j.soildyn.2015.03.026 CrossRefGoogle Scholar
  22. Makris N, Vassiliou MF, 2012. Sizing the slenderness of free-standing rocking columns to withstand earthquake shaking. Archive of Applied Mechanics, 82(10–11):1497–1511. https://doi.org/10.1007/s00419-012-0681-x CrossRefMATHGoogle Scholar
  23. Monaco M, Guadagnuolo M, Gesualdo A, 2014. The role of friction in the seismic risk mitigation of freestanding art objects. Natural Hazards, 73(2):389–402. https://doi.org/10.1007/s11069-014-1076-9 CrossRefGoogle Scholar
  24. Moreau JJ, Panagiotopoulos PD, 1988. Nonsmooth Mechanics and Applications. Springer, Wien, Austria.CrossRefMATHGoogle Scholar
  25. Newmark NM, 1965. Effects of earthquakes on dams and embankments. Géotechnique, 15(2):139–160. https://doi.org/10.1680/geot.1965.15.2.139 CrossRefGoogle Scholar
  26. Penta F, Rossi C, Savino S, 2014. Mechanical behavior of the imperial carroballista. Mechanism and Machine Theory, 80:142–150. https://doi.org/10.1016/j.mechmachtheory.2014.05.006 CrossRefGoogle Scholar
  27. Prieto F, Lourenço PB, 2005. On the rocking behaviour of rigid objects. Meccanica, 40(2):121–133. https://doi.org/10.1007/s11012-005-5875-7 MathSciNetCrossRefMATHGoogle Scholar
  28. Psycharis IN, 1990. Dynamic behaviour of rocking two-block assemblies. Earthquake Engineering & Structural Dynamics, 19(4):555–575. https://doi.org/10.1002/eqe.4290190407 CrossRefGoogle Scholar
  29. Psycharis IN, Papastamatiou DY, Alexandris AP, 2000. Parametric investigation of the stability of classical columns under harmonic and earthquake excitations. Earthquake Engineering & Structural Dynamics, 29(8):1093–1109.  https://doi.org/10.1002/1096-9845(200008)29:8<1093::AID-EQE953>3.0.CO;2-S CrossRefGoogle Scholar
  30. Purvance MD, Abdolrasool A, Brune JN, 2008. Freestanding block overturning fragilities: numerical simulation and experimental validation. Earthquake Engineering & Structural Dynamics, 37(5):791–808. https://doi.org/10.1002/eqe.789 CrossRefGoogle Scholar
  31. Shao Y, Tung CC, 1999. Seismic response of unanchored bodies. Earthquake Spectra, 15(3):523–536. https://doi.org/10.1193/1.1586056 CrossRefGoogle Scholar
  32. Shenton HW, 1996. Criteria for initiation of slide, rock, and slide-rock rigid-body modes. Journal of Engineering Mechanics, 122(7):690–693. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(690) CrossRefGoogle Scholar
  33. Sinopoli A, 1997. Unilaterality and dry friction: a geometric formulation for two-dimensional rigid body dynamics. Nonlinear Dynamics, 12(4):343–366. https://doi.org/10.1023/A:1008289716620 MathSciNetCrossRefMATHGoogle Scholar
  34. Spanos P, Koh AS, 1984. Rocking of rigid blocks due to harmonic shaking. Journal of Engineering Mechanics, 110(11):1627–1642. https://doi.org/10.1061/(asce)0733-9399(1984)110:11(1627) CrossRefGoogle Scholar
  35. Spanos P, Roussis PC, Politis NP, 2001. Dynamic analysis of stacked rigid blocks. Soil Dynamics and Earthquake Engineering, 21(7):559–578. https://doi.org/10.1016/S0267-7261(01)00038-0 CrossRefGoogle Scholar
  36. Voyagaki E, Mylonakis G, Psycharis IN, 2012. Rigid block sliding to idealized acceleration pulses. Journal of Engineering Mechanics, 138(9):1071–1083. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000418 CrossRefGoogle Scholar
  37. Voyagaki E, Psycharis I, Mylonakis G, 2013. Rocking response and overturning criteria for free standing rigid blocks to single-lobe pulses. Soil Dynamics and Earthquake Engineering, 46:85–95. https://doi.org/10.1016/j.soildyn.2012.11.010 CrossRefGoogle Scholar
  38. Voyagaki E, Psycharis I, Mylonakis G, 2014. Complex response of a rocking block to a full-cycle pulse. Journal of Engineering Mechanics, 140(6):04014024. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000712 CrossRefGoogle Scholar
  39. Wolfram S, 2003. The Mathematica Book. Wolfram Media, Inc., Champaign, USA.MATHGoogle Scholar
  40. Yim SCS, Chopra A, Penzien J, 1980. Rocking response of rigid blocks to earthquakes. Earthquake Engineering & Structural Dynamics, 8(6):565–580. https://doi.org/10.1002/eqe.4290080606 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Structures for Engineering and ArchitectureUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Architecture and Industrial DesignUniversity of Campania Luigi VanvitelliAversa (Ce)Italy
  3. 3.Department of Industrial EngineeringUniversity of Naples Federico IINaplesItaly

Personalised recommendations