Skip to main content
Log in

Multi-objective optimization design of bridge piers with hybrid heuristic algorithms

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

This paper describes one approach to the design of reinforced concrete (RC) bridge piers, using a three-hybrid multi-objective simulated annealing (SA) algorithm with a neighborhood move based on the mutation operator from the genetic algorithms (GAs), namely MOSAMO1, MOSAMO2 and MOSAMO3. The procedure is applied to three objective functions: the economic cost, the reinforcing steel congestion and the embedded CO2 emissions. Additional results for a random walk and a descent local search multi-objective algorithm are presented. The evaluation of solutions follows the Spanish Code for structural concrete. The methodology was applied to a typical bridge pier of 23.97 m in height. This example involved 110 design variables. Results indicate that algorithm MOSAMO2 outperforms other algorithms regarding the definition of Pareto fronts. Further, the proposed procedure will help structural engineers to enhance their bridge pier designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balling, R.J., Yao, X., 1997. Optimization of reinforced concrete frames. ASCE Journal of Structural Engineering, 123(2):193–202. [doi:10.1061/(ASCE)0733-9445(1997) 123:2(193)]

    Article  Google Scholar 

  • Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K., 2008. A simulated annealing-based multi-objective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12(3):269–283. [doi:10.1109/TEVC.2007. 900837]

    Article  Google Scholar 

  • Carbonell, A., Gonzalez-Vidosa, F., Yepes, V., 2011. Design of reinforced concrete road vault underpasses by heuristic optimization. Advances in Engineering Software, 42(4): 151–159. [doi:10.1016/j.advengsoft.2011.01.002]

    Article  MATH  Google Scholar 

  • Catalonia Institute of Construction Technology, 2009. BEDEC PR/PCT ITEC Materials Database, Barcelona, Spain.

  • Cerny, V., 1985. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1): 41–51. [doi:10.1007/BF00940812]

    Article  MathSciNet  MATH  Google Scholar 

  • Coello, C.A., Christiansen, A.D., Santos, F., 1997. A simple genetic algorithm for the design of reinforced concrete beams. Engineering with Computers, 13(4):185–196. [doi:10.1007/BF01200046]

    Article  Google Scholar 

  • Cohn, M.Z., Dinovitzer, A.S., 1994. Application of structural optimization. ASCE Journal of Structural Engineering, 120(2):617–649. [doi:10.1061/(ASCE)0733-9445(1994) 120:2(617)]

    Article  Google Scholar 

  • Deb, D., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York, USA.

    MATH  Google Scholar 

  • Dorigo, M., Maniezzo, V., Colorni, A., 1996. The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1):29–41. [doi:10.1109/3477.484436]

    Article  Google Scholar 

  • Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA.

    Google Scholar 

  • Kaveh, A., Talatahari, S., 2009. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Computers and Structures, 87(5–6):267–283. [doi:10.1016/j.compstruc. 2009.01.003]

    Article  Google Scholar 

  • Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. IEEE International Conference on Neural Networks, Perth, Australia. IEEE Service Center, Piscataway, p.1942–1948.

    Google Scholar 

  • Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M., 2011. Modified particle swarm optimization for optimum design of spread footing and retaining wall. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(6):415–427. [doi:10.1631/jzus.A1000252]

    Article  Google Scholar 

  • Kicinger, R., Arciszewski, T., de Jong, K., 2005. Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures, 83(23–24): 1943–1978. [doi:10.1016/j.compstruc.2005.03.002]

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. Science, 220(4598):671–680. [doi:10.1126/science.220.4598.671]

    Article  MathSciNet  MATH  Google Scholar 

  • Koumousis, V.K., Arsenis, S.J., Vasiloglou, V.B., 1996. Detailed design of reinforced concrete buildings using logic programming. Advances in Engineering Software, 25(2–3):161–176. [doi:10.1016/0965-9978(95)00092-5]

    Article  Google Scholar 

  • Lee, K.S., Geem, Z., 2004. A new structural optimization method based on the harmony search algorithm. Computers & Structures, 82(9–10):781–798. [doi:10. 1016/j.compstruc.2004.01.002]

    Article  Google Scholar 

  • Marti, J.V., Gonzalez-Vidosa, F., 2010. Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7–8): 916–922. [doi:10.1016/j.advengsoft.2010.05.003]

    Article  MATH  Google Scholar 

  • Martinez, F.J., Gonzalez-Vidosa, F., Hospitaler, A., Yepes, V., 2010. Heuristic optimization of RC bridge piers with rectangular hollow sections. Computers and Structures, 88(5–6):375–386. [doi:10.1016/j.compstruc.2009.11.009]

    Article  Google Scholar 

  • Ministerio de Fomento, 1998. IAP-98: Code on the Actions to be Considered for the Design of Road Bridges. Madrid, Spain (in Spanish).

    Google Scholar 

  • Ministerio de Fomento, 2008. EHE-08: Code of Structural Concrete. Madrid, Spain (in Spanish).

  • Neville, A.M., 1981. Properties of Concrete, 3rd Edition. Pitman, London, UK.

    Google Scholar 

  • Paya, I., Yepes, V., Gonzalez-Vidosa, F., Hospitaler, A., 2008. Multi-objective optimization of concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8):596–610. [doi:10.1111/j.1467-8667.2008.00561.x]

    Article  Google Scholar 

  • Paya-Zaforteza, I., Yepes, V., Hospitaler, A., Gonzalez-Vidosa, F., 2009. CO2-optimization of reinforced concrete frames by simulated annealing. Engineering Structures, 31(7): 1501–1508. [doi:10.1016/j.engstruct.2009.02.034]

    Article  Google Scholar 

  • Perea, C., Alcalá, J., Yepes, V., González-Vidosa, F., Hospitaler, A., 2008. Design of reinforced concrete bridge frames by heuristic optimization. Advances in Engineering Software, 39(8):676–688. [doi:10.1016/j.advengsoft. 2007.07.007]

    Article  Google Scholar 

  • Ponz-Tienda, J.L., Pellicer, E., Yepes, V., 2012. Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(1): 56–68. [doi:10.1631/jzus.A1100160]

    Article  Google Scholar 

  • Serafini, P., 1992. Simulated Annealing for Multiple Objective Optimization Problems. Proceedings of the Tenth International Conference on Multiple Criteria Decision Making, Taipei, p.87–96.

  • Soke, A., Bingul, Z., 2006. Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence, 19(5):557–567. [doi:10.1016/j.engappai.2005.12.003]

    Article  Google Scholar 

  • Suppapitnarm, A., Seffen, K.A., Parks, G.T., Clarkson, P.J., 2000. A simulated annealing algorithm for multi-objective optimization. Engineering Optimization, 33(1): 59–85. [doi:10.1080/03052150008940911]

    Article  Google Scholar 

  • Wong, S.Y.W., 2001. Hybrid simulated annealing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants. International Journal of Electrical Power & Energy Systems, 23(7):565–575. [doi:10.1016/S0142-0615(00)00029-6]

    Article  Google Scholar 

  • Wu, T.H., Chung, S.H., Chang, C.C., 2009. Hybrid simulated annealing algorithm with mutation operator to the cell formation problem with alternative process routings. Expert Systems with Applications, 36(2):3652–3661. [doi:10.1016/j.eswa.2008.02.060]

    Article  Google Scholar 

  • Yepes, V., Medina, J.R., 2006. Economic heuristic optimization for the heterogeneous fleet VRPHESTW. ASCE Journal of Transportation Engineering, 132(4):303–311. [doi:10.1061/(ASCE)0733-947X(2006)132:4(303)]

    Article  Google Scholar 

  • Yepes, V., Alcala, J., Perea, C., González-Vidosa, F., 2008. A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3): 821–830. [doi:10.1016/j.engstruct.2007.05.023]

    Article  Google Scholar 

  • Yepes, V., Gonzalez-Vidosa, F., Alcala, J., Villalba, P., 2012. CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. ASCE Journal of Computing in Civil Engineering, 26(3): 378–386. [doi:10.1061/(ASCE)CP.1943-5487.0000140]

    Article  Google Scholar 

  • Zhang, W.M., Li, S.J., Qian, F., 2008. θ-PSO: a new strategy of particle swarm optimization. Journal of Zhejiang University-SCIENCE A, 9(6):786–790. [doi:10.1631/jzus.A071278]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Yepes.

Additional information

Project supported by the Spanish Ministry of Science and Innovation (No. BIA2011-23602), and the European Community with the European Regional Development Fund (FEDER), Spain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Martin, F.J., Gonzalez-Vidosa, F., Hospitaler, A. et al. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J. Zhejiang Univ. Sci. A 13, 420–432 (2012). https://doi.org/10.1631/jzus.A1100304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1100304

Key words

CLC number

Navigation