Skip to main content
Log in

Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

Steel plates are widely used in various structures, such as the deck and bodies of ships and bridges, and in the aerospace industry. In many instances, these plates are subjected to axial compression loads that predispose the sheets to instability and buckling. In this study, we investigate the buckling and post-buckling behaviors of steel plates having groove-shaped cutouts of various dimensions and angles using finite element method (FEM) (by ABAQUS software) and experimental tests (by an Instron servohydraulic machine). Boundary conditions were clamped by supports at upper and lower ends and free supports at the other edges. The results of both numerical and experimental analyses are compared, which show a very good agreement between them. Finally, based on the experimental findings, formulas are presented for the determination of the buckling load of such plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brown, C.J., 1990. Elastic buckling of perforated plates subjected to concentrated loads. Computers & Structures, 36(6):1103–1109. [doi:10.1016/0045-7949(90)90218-Q]

    Article  Google Scholar 

  • Brown, C.J., Yettram, A.L., 1986. The elastic stability of square perforated plates under combination of bending, shear and direct load. Thin-Walled Structures, 4(3):239–246. [doi:10.1016/0263-8231(86)90005-4]

    Article  Google Scholar 

  • Brown, C.J., Yettram, A.L., Burnett, M., 1987. Stability of plates with rectangular holes. Journal of Structural Engineering, 113(5):1111–1116. [doi:10.1061/(ASCE)0733-9445(1987)113:5(1111)]

    Article  Google Scholar 

  • Brush, D.O., Almorth, B.O., 1975. Buckling of Bars, Plates, and Shells. McGraw-Hill, New York, USA.

    MATH  Google Scholar 

  • Eccher, G., Rasmussen, K.J.R., Zandonini, R., 2008. Elastic buckling analysis of perforated thin-walled structures by the isoparametric spline finite strip method. Thin-Walled Structures, 46(2):165–191. [doi:10.1016/j.tws.2007.08.030]

    Article  Google Scholar 

  • Eccher, G., Rasmussen, K.J.R., Zandonini, R., 2009. Geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled structures. Thin-Walled Structures, 47(2):219–232. [doi:10.1016/j.tws.2008.05.013]

    Article  Google Scholar 

  • El-Sawy, K.M., Nazmy, A.S., 2001. Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes. Thin-Walled Structures, 39(12):983–998. [doi:10.1016/S0263-8231(01)00040-4]

    Article  Google Scholar 

  • El-Sawy, K.M., Nazmy, A.S., Martini, M.I., 2004. Elastoplastic buckling of perforated plates under uniaxial compression. Thin-Walled Structures, 42(8):1083–1101. [doi: 10.1016/j.tws.2004.03.002]

    Article  Google Scholar 

  • Gerstle, K.H., 1967. Basic Structural Design. McGraw-Hill, New York, USA, p.88–90.

    Google Scholar 

  • Komur, M.A., Sonmez, M., 2008. Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout. Mechanics Research Communications, 35(6):361–371. [doi:10.1016/j.mechrescom.2008.01.005]

    Article  Google Scholar 

  • Maan, F.S., Querin, O.M., Barton, D.C., 2007. Extension of the fixed grid finite element method to eigenvalue problems. Advances in Engineering Software, 38(8–9): 607–617. [doi:10.1016/j.advengsoft.2006.08.026]

    Article  Google Scholar 

  • Maiorana, E., Pellegrino, C., Modena, C., 2008a. Linear buckling analysis of perforated plates subjected to localised symmetrical load. Engineering Structures, 30(11): 3151–3158. [doi:10.1016/j.engstruct.2008.04.024]

    Article  Google Scholar 

  • Maiorana, E., Pellegrino, C., Modena, C., 2008b. Linear buckling analysis of unstiffened plates subjected to both patch load and bending moment. Engineering Structures, 30(12):3731–3738. [doi:10.1016/j.engstruct.2008.07.002]

    Article  Google Scholar 

  • Maiorana, E., Pellegrino, C., Modena, C., 2009. Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment. Thin-Walled Structures, 47(3):241–255. [doi:10.1016/j.tws.2008.08.003]

    Article  Google Scholar 

  • Mignot, F., Puel, J.P., Suquet, P.M., 1980. Homogenization and bifurcation of perforated plates. Engineering Science, 18(2):409–414. [doi:10.1016/0020-7225(80)90060-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Moen, C.D., Schafer, B.W., 2009. Elastic buckling of thin plates with holes in compression or bending. Thin-Walled Structures, 47(12):1597–1607. [doi:10.1016/j.tws.2009.05.001]

    Article  Google Scholar 

  • Narayanan, R., Chow, F.Y., 1984. Ultimate capacity of uniaxially compressed perforated plates. Thin-Walled Structures, 2(3):241–264. [doi:10.1016/0263-8231(84)90021-1]

    Article  Google Scholar 

  • Paik, J.K., 2008. Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads. Thin-Walled Structures, 46(2):207–213. [doi:10.1016/j.tws.2007.07.010]

    Article  Google Scholar 

  • Rahai, A.R., Alinia, M.M., Kazemi, S., 2008. Buckling analysis of stepped plates using modified buckling mode shapes. Thin-Walled Structures, 46(5):484–493. [doi:10.1016/j.tws.2007.10.012]

    Article  Google Scholar 

  • Roberts, T.M., Azizian, Z.G., 1984. Strength of perforated plates subjected to in-plane loading. Thin-Walled Structures, 2(2):153–164. [doi:10.1016/0263-8231(84)90009-0]

    Article  Google Scholar 

  • Shanmugam, N.E., Thevendran, V., Tan, Y.H., 1999. Design formula for axially compressed perforated plates. Thin-Walled Structures, 34(1):1–20. [doi:10.1016/S0263-8231(98)00052-4]

    Article  Google Scholar 

  • Shariati, M., Rokhi, M.M., 2010. Buckling of steel cylindrical shells with an elliptical cutout. International Journal of Steel Structures, 10(2):193–205. [doi:10.1007/BF03215830]

    Article  Google Scholar 

  • Shariati, M., Sedighi, M., Saemi, J., Poorfar, A.K., 2011. Numerical analysis and experimental study of buckling behavior of steel cylindrical panels. Steel Research International, 82(3):202–212. [doi:10.1002/srin.201000071]

    Article  Google Scholar 

  • Singh, A.V., Tanveer, M., 2006. Eigenvalue analysis of doubly connected plates with different configurations. Journal of Sound and Vibration, 295(1–2):76–93. [doi:10.1016/j.jsv.2005.12.044]

    Article  Google Scholar 

  • Timoshenko, S.P., Gere, J.M., 1961. Theory of Elastic Stability, 2nd Edition. McGraw-Hill, New York, USA.

    Google Scholar 

  • Tsavdaridis, K.D., D’Mello, C., 2011. Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes. Journal of Constructional Steel Research, 67(10):1605–1620. [doi:10.1016/j.jcsr.2011.04.004]

    Article  Google Scholar 

  • Yettram, A.L., Brown, C.J., 1985. The elastic stability of square perforated plates. Computer & Structures, 21(6): 1267–1272. [doi:10.1016/0045-7949(85)90180-4]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Taheri Kahnamouei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohtaram, Y.F., Kahnamouei, J.T., Shariati, M. et al. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts. J. Zhejiang Univ. Sci. A 13, 469–480 (2012). https://doi.org/10.1631/jzus.A1100226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1100226

Key words

CLC number

Navigation