Journal of Zhejiang University SCIENCE A

, Volume 13, Issue 1, pp 1–8 | Cite as

Stress intensity factors under combined bending and torsion moments

  • Al Emran Ismail
  • Ahmad Kamal Ariffin
  • Shahrum Abdullah
  • Mariyam Jameelah Ghazali
  • Mohammed Abdulrazzaq
  • Ruslizam Daud
Article

Abstract

This paper discusses stress intensity factor (SIF) calculations for surface cracks in round bars subjected to combined torsion and bending loadings. Different crack aspect ratios, a/b, ranging from 0.0 to 1.2 and relative crack depths, a/D, ranging from 0.1 to 0.6 were considered. Since the loading was non-symmetrical for torsion loadings, a whole finite element model was constructed. Then, the individual and combined bending and torsion loadings were remotely applied to the model. The equivalent SIF method, F*EQ, was then used explicitly to combine the individual SIFs from the bending and torsion loadings. A comparison was then carried out with the combined SIF, F*FE, obtained using the finite element analysis (FEA) under similar loadings. It was found that the equivalent SIF method successfully predicted the combined SIF for Mode I. However, discrepancies between the results determined from the different approaches occurred when F III was involved. It was also noted that the predicted F*FE using FEA was higher than the F*EQ predicted through the equivalent SIF method due to the difference in crack face interactions.

Key words

Stress intensity factor (SIF) Combined loadings Finite element analysis (FEA) Surface cracks Round solid bars 

CLC number

O39 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A., Karlsson, A.M., 2006. Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique. Journal of Fracture, 141:75–98. [doi:10.1007/s10704-006-0069-4]CrossRefMATHGoogle Scholar
  2. Alshoaibi, A.M., Ariffin, A.K., 2006. Finite element simulation of stress intensity factors in elastic-plastic crack growth. Journal Zhejiang University-SCIENCE A, 7(8): 1336–1342. [doi:10.1631/jzus.2006.A1336]CrossRefMATHGoogle Scholar
  3. Alshoaibi, A.M., Hadi, M.S.A., Ariffin, A.K., 2007. An adaptive finite element procedure for crack propagation analysis. Journal of Zhejiang University-SCIENCE A, 8(2):228–236. [doi:10.1631/jzus.2007.A0228]CrossRefMATHGoogle Scholar
  4. ANSYS, 2007. Release 11.0 Documentation. ANSYS Inc.Google Scholar
  5. Aslantas, K., 2003. A different approach for calculation of stress intensity factors in continuous fiber reinforced metal matrix composites. Journal of Solids and Structures, 40:7475–7481. [doi:10.1016/j.ijsolstr.2003.09.002]CrossRefMATHGoogle Scholar
  6. Aslantas, K., Ergun, E., Tasgetiren, S., 2006. A numerical model for calculation of stress intensity factors in particle-reinforced metal-matrix composites. Journal of Mechanical and Materials Design, 3:201–208. [doi:10.1007/s10999-007-9023-5]CrossRefGoogle Scholar
  7. Carpinteri, A., 1992. Elliptical-arc surface cracks in round bars. Fatigue and Fracture of Engineering Materials and Structures, 15:1141–1153. [doi:10.1111/j.1460-2695.1992.tb00039.x]CrossRefGoogle Scholar
  8. Carpinteri, A., 1993. Shape change of surface cracks in round bars under cyclic axial loading. Journal of Fatigue, 15: 21–26. [doi:10.1016/0142-1123(93)90072-X]CrossRefGoogle Scholar
  9. Carpinteri, A., Vantadori, S., 2009. Sickle-shaped cracks in metallic round bars under cyclic eccentric axial loading. Journal of Fatigue, 1531:759–765. [doi:10.1016/j.ijfatigue.2008.03.006]CrossRefGoogle Scholar
  10. Carpinteri, A., Brighenti, R., Vantadori, S., 2006. Surface crack in notched round bars under cyclic tension and bending. Journal of Fatigue, 1528:251–260. [doi:10.1016/j.ijfatigue.2005.05.006]CrossRefGoogle Scholar
  11. Fonte, M.D., Freitas, M.D., 1999. Stress intensity factor for semi-elliptical surface cracks in round bars under bending and torsion. Journal of Fatigue, 1521:457–463. [doi:10.1016/S0142-1123(98)00090-5]CrossRefGoogle Scholar
  12. Gray, G.T., Thompson, A.W., William, J.C., 1985. Influence of microstructure on fatigue crack initiation in fully pearlitic steels. Metallurgical Transaction A, 16:753–760. [doi:10.1007/BF02814826]CrossRefGoogle Scholar
  13. Ismail, A.E., Ariffin, A.K., Abdullah, S., Ghazali, M.J., 2011. Off-set crack propagation analysis under mixed-mode loadings. Journal of Automotive Technology, 12(2):225–232. [doi:10.1007/s12239-011-0027-7]CrossRefGoogle Scholar
  14. Lei, Y., 2004. J-integral and limit load analysis of semi-elliptical surface cracks in plates under combined tension and bending. Journal of Pressure Vessels and Piping, 81(1):31–41. [doi:10.1016/j.ijpvp.2003.12.003]CrossRefGoogle Scholar
  15. Lin, X.B., Smith, R.A., 1997. Shape growth simulation of surface cracks in tension fatigue round bars. Journal of Fatigue, 19:461–469. [doi:10.1016/S0142-1123(99)00075-4]CrossRefGoogle Scholar
  16. Mahmoud, K.M., 2007. Fracture strength for a high strength steel bridge cable wire with a surface crack. Theoretical Applied Fracture Mechanics, 48:152–160. [doi:10.1016/j.tafmec.2007.05.006]CrossRefGoogle Scholar
  17. Qian, J., Fatemi, A., 1996. Mixed mode fatigue crack growth: A literature survey. Engineering Fracture Mechanics, 55:969–990. [doi:10.1016/S0013-7944(96)00071-9]CrossRefGoogle Scholar
  18. Raju, I.S., Newman, J.C., 1986. Stress Intensity Factors for Circumferential Surface Cracks in Pipes and Rods under Tension and Bending Loads. Elsevier Science Publisher, North Holland, p.789–805.Google Scholar
  19. Shahani, A.R., Habibi, S.E., 2007. Stress intensity factors in a hollow cylinder containing a circumferential semi-elliptical crack subjected to combined loading. Journal of Fatigue, 1529:128–140. [doi:10.1016/j.ijfatigue.2006.01.017]CrossRefGoogle Scholar
  20. Shin, C.S., Cai, C.Q., 2004. Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending. International Journal of Fracture, 129:239–264. [doi:10.1023/b:frac0000047784.23236.7d]CrossRefMATHGoogle Scholar
  21. Toribio, J., Matos, J.C., Gonzalez, B., Escuadra, J., 2008. Numerical modeling of crack shape evolution for surface flaws in round bars under tensile loading. Engineering Failure Analysis, 16:618–630. [doi:10.1016/j.engfailanal.2008.02.014]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Al Emran Ismail
    • 1
    • 2
  • Ahmad Kamal Ariffin
    • 2
  • Shahrum Abdullah
    • 2
  • Mariyam Jameelah Ghazali
    • 2
  • Mohammed Abdulrazzaq
    • 2
  • Ruslizam Daud
    • 3
  1. 1.Faculty of Mechanical & Manufacturing EngineeringUniversiti Tun Hussein Onn MalaysiaBatu PahatJohor, Malaysia
  2. 2.Faculty of Engineering & Built EnvironmentUniversiti Kebangsaan MalaysiaBangiSelangor, Malaysia
  3. 3.School of Mechatronic EngineeringUniversiti Malaysia PerlisArauPerlis, Malaysia

Personalised recommendations