Journal of Zhejiang University-SCIENCE A

, Volume 12, Issue 1, pp 63–70 | Cite as

Evaluation of the heat transfer performance of helical coils of non-circular tubes

  • Jundika C. Kurnia
  • Agus P. Sasmito
  • Arun S. Mujumdar
Article

Abstract

This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e.g., in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid in helical coils made of square cross section tubes is simulated using the computational fluid dynamic approach. The effects of tube Reynolds number, fluid Prandtl number, coil diameter, etc., are quantified and discussed. Both constant wall temperature and constant heat flux conditions are simulated. The effect of in-plane coil versus a cylindrical design of constant coil, as well as a conical coil design is discussed. Results are compared with those for a straight square tube of the same length as that used to form the coils. Advantages and limitations of using coiled tubes are discussed in light of the numerical results.

Key words

Coil Non-circular tube Heat transfer performance Mathematical model 

CLC number

TK22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, S., Nigam, K.D.P., 2001. Modeling of coiled tubular chemical reactor. Chemical Engineering Journal, 84(3): 437–444. [doi:10.1016/S1385-8947(00)00370-3]CrossRefGoogle Scholar
  2. Akiyama, M., Cheng, K.C., 1974. Graetz problem in curved pipes with uniform wall heat flux. Applied Scientific Research, 29(1):401–418. [doi:10.1007/BF00384162]CrossRefMATHGoogle Scholar
  3. Dean, W.R., 1927a. Note on the motion of fluid in a curved pipe. Philosophical Magazine, 4(20):208–223.CrossRefMATHGoogle Scholar
  4. Dean, W.R., 1927b. The stream-line motion of fluid in a curved pipe. Philosophical Magazine, 5(7):208–223.CrossRefMATHGoogle Scholar
  5. Dennis, S.C.R., Ng, M., 1982. Dual solutions for steady laminar flow through a curved tube. The Quarterly Journal of Mechanics and Applied Mathematics, 35(3): 305–324. [doi:10.1093/qjmam/35.3.305]CrossRefMATHGoogle Scholar
  6. Dravid, A.N., Smith, K.A., Merril, E.W., Brian, P.L.T., 1971. Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes. AIChE Journal, 17(5): 1114–1122. [doi:10.1002/aic.690170517]CrossRefGoogle Scholar
  7. Egner, M.W., Burmeister, L.C., 2005. Heat transfer for laminar flow in spiral ducts of rectangular cross section. Journal of Heat Transfer, 127(3):352–356. [doi:10.1115/1.1857950]CrossRefGoogle Scholar
  8. Joseph, B., Adler, R.J., 1975. Numerical treatment of laminar flow in helically coiled tubes of square cross section. Part II: Oscillating helically coiled tubes. AIChE Journal, 21(5):974–979. [doi:10.1002/aic.690210520]CrossRefGoogle Scholar
  9. Joseph, B., Smith, E.P., Adler, R.J., 1975. Numerical treatment of laminar flow in helically coiled tubes of square cross section part I: Stationary helically coiled tubes. AIChE Journal, 21(5):965–974. [doi:10.1002/aic.690210519]CrossRefGoogle Scholar
  10. Kaya, O., Teke, I., 2005. Turbulent forced convection in helically coiled square duct with one uniform temperature and three adiabatic walls. Heat and Mass Transfer, 42(2):129–137. [doi:10.1007/s00231-005-0656-3]CrossRefGoogle Scholar
  11. Kays, W., Crawford, M., Weigand, B., 2005. Convective Heat and Mass Transport (4th Ed.). McGraw Hill, Singapore.Google Scholar
  12. Ko, T.H., 2006. A numerical study on entropy generation and optimization for laminar forced convection in a rectangular curved duct with longitudinal ribs. International Journal of Thermal Sciences, 45(11):1113–1125. [doi:10.1016/j.ijthermalsci.2006.03.003]CrossRefGoogle Scholar
  13. Kumar, V., Gupta, P., Nigam, K.D.P., 2007. Fluid flow and heat transfer in curved tubes with temperature-dependent properties. Industrial and Engineering Chemistry Research, 46(10):3226–3236. [doi:10.1021/ie0608399]CrossRefGoogle Scholar
  14. Kumar, V., Faizee, B., Mridha, M., Nigam, K.D.P., 2008. Numerical studies of a tube-in-tube helically coiled heat exchanger. Chemical Engineering and Processing Process Intensification, 47(12):2287–2295. [doi:10.1016/j. cep.2008.01.001]CrossRefGoogle Scholar
  15. Lin, C.X., Ebadian, M.A., 1997. Developing turbulent convective heat transfer in helical pipes. International Journal of Heat and Mass Transfer, 40(16):3861–3873. [doi:10.1016/S0017-9310(97)00042-2]CrossRefMATHGoogle Scholar
  16. Liou, T.M., 1992. Flow visualization and LDV measurement of fully developed laminar flow in helically coiled tubes. Experiments in Fluids, 13(5):332–338. [doi:10.1007/BF00209507]CrossRefGoogle Scholar
  17. Mandal, M.M., Kumar, V., Nigam, K.D.P., 2010. Augmentation of heat transfer performance in coiled flow inverter vis-à-vis conventional heat exchanger. Chemical Engineering Science, 65(2):999–1007. [doi:10.1016/j.ces.2009.09.053]CrossRefGoogle Scholar
  18. Masliyah, J.C., 1980. On laminar flow in curved semicircular ducts. Journal of Fluid Mechanics, 99(3):469–479. [doi:10.1017/S0022112080000717]CrossRefMATHGoogle Scholar
  19. Nandakumar, K., Masliyah, J.C., 1982. Bifurcation in steady laminar flow through curved tubes. Journal of Fluid Mechanics, 119:475–490. [doi:10.1017/S002211208200 144X]CrossRefMATHGoogle Scholar
  20. Naphon, P., 2007. Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins. International Communications in Heat and Mass Transfer, 34(3):321–330. [doi:10.1016/j.ijheatmasstransfer.2006.08.002]CrossRefGoogle Scholar
  21. Naphon, P., Wongwises, S., 2006. A review of flow and heat transfer characteristics in curved tubes. Renewable and Sustainable Energy Reviews, 10(5):463–490. [doi:10. 1016/j.rser.2004.09.014]CrossRefGoogle Scholar
  22. Naphon, P., Suwagrai, J., 2007. Effect of curvature ratio on the heat transfer and flow developments in the horizontal spirally coiled tubes. International Journal of Heat and Mass Transfer, 50(3-4):444–451. [doi:10.1016/j.ijheatmasstransfer.2006.08.002]CrossRefMATHGoogle Scholar
  23. Norouzi, M., Kayhani, M.H., Nobari, M.R.H., Demneh, M.K., 2009. Convective heat transfer of viscoelastic flow in a curved duct. World Academy of Science, Engineering and Technology, 56:327–333. [doi:10.1007/s00231-010-0641-3]Google Scholar
  24. Rogers, G.F.C., Mayhew, Y.R., 1964. Heat transfer and pressure loss in helically coiled tubes with turbulent flow. International Journal of Heat and Mass Transfer, 7(11):1207–1216. [doi:10.1016/0017-9310(64)90062-6]CrossRefGoogle Scholar
  25. Shokouhmand, H., Salimpour, M.R., 2007a. Optimal Reynolds number of laminar forced convection in a helical tube subjected to uniform wall temperature. International Communications in Heat and Mass Transfer, 34(6): 753–761. [doi:10.1016/j.icheatmasstransfer.2007.02.010]CrossRefGoogle Scholar
  26. Shokouhmand, H., Salimpour, M.R., 2007b. Entropy generation analysis of fully developed laminar forced convection in a helical tube with uniform wall temperature. Heat and Mass Transfer, 44(2):213–220. [doi:10.1007/s00231-007-0235-x]CrossRefGoogle Scholar
  27. Vashisth, S., Kumar, V., Nigam, K.D.P., 2008. A review on the potential applications of curved geometries in process industry. Industrial and Engineering Chemistry Research, 47(10):3291–3337. [doi:10.1021/ie701760h]CrossRefGoogle Scholar
  28. Wongwises, S., Naphon, P., 2006. Heat transfer characteristics of a spirally coiled, finned-tube heat exchanger under dry-surface conditions. Heat Transfer Engineering, 27(1): 25–34. [doi:10.1080/01457630500341698]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jundika C. Kurnia
    • 1
  • Agus P. Sasmito
    • 1
  • Arun S. Mujumdar
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Mineral, Metal and Material Technology CentreNational University of SingaporeSingaporeSingapore

Personalised recommendations