Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 11, Issue 10, pp 822–826 | Cite as

Shift in the percolation threshold of compressed composites—A 3D Monte Carlo simulation

Article

Abstract

The shift in the percolation threshold of compressed composites was studied by a 3D continuum percolation model. A Monte Carlo (MC) method was employed in the simulations. The percolation threshold was found to rise with the compression strain, which captures the basic trend in compression-induced conductivity variation from the experiments. Both fiber bending and texture formation contribute to the percolation threshold. The results suggest that fillers with a high aspect ratio are more desirable for sensor and electrical switch applications.

Key words

Monte Carlo (MC) model Percolation threshold Compressed composites 

CLC number

TB303 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauhofer, W., Kovacs, J.Z., 2009. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10): 1486–1498. [doi:10.1016/j.compscitech.2008.06.018]CrossRefGoogle Scholar
  2. Carmona, F., Canet, R., Delhaes, P., 1987. Piezoresistance of heterogeneous solids. Journal of Applied Physics, 61(7): 2550–2557. [doi:10.1063/1.337932]CrossRefGoogle Scholar
  3. Dang, Z.M., Wang, L., Yin, Y., Zhang, Q., Lei, Q.Q., 2007. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Advanced Materials, 19(6):852–857. [doi:10.1002/adma.200600703]CrossRefGoogle Scholar
  4. Foygel, M., Morris, R.D., Anez, D., French, S., Sobolev, V.L., 2005. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Physical Review B, 71(10):104201. [doi:10.1103/PhysRevB.71.104201]CrossRefGoogle Scholar
  5. Hussain, M., Choa, Y.H., Niihara, K., 2001. Fabrication process and electrical behavior of novel pressure-sensitive composites. Composites Part A: Applied Science and Manufacturing, 32(12):1689–1696. [doi:10.1016/S1359-835X(01)00035-5]CrossRefGoogle Scholar
  6. Kirkpatrick, S., 1973. Percolation and conduction. Reviews of Modern Physics, 45(4):574–588 [doi:10.1103/RevModPhys.45.574]CrossRefGoogle Scholar
  7. Li, C., Chou, T.W., 2007. Continuum percolation of nanocomposites with fillers of arbitrary shapes. Applied Physics Letters, 90(17):174108. [doi:10.1063/1.2732201]CrossRefGoogle Scholar
  8. Lin, C., Wang, H., Yang, W., 2010. Variable percolation threshold of composites with fiber fillers under compression. Journal of Applied Physics, 108(1):013509. [doi:10.1063/1.3457351]CrossRefGoogle Scholar
  9. Ma, H.M., Gao, X.L., 2008. A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers. Polymer, 49(19):4230–4238. [doi:10.1016/j.polymer.2008.07.034]CrossRefGoogle Scholar
  10. Ma, H.M., Gao, X.L., Tolle, T.B., 2010. Monte Carlo modeling of the fiber curliness effect on percolation of conductive composites. Applied Physics Letters, 96(6): 061910. [doi:10.1063/1.3309590]CrossRefGoogle Scholar
  11. Safran, S.A., Webman, I., Grest, G.S., 1985. Percolation in interacting colloids. Physical Review A, 32(1):506–511 [doi:10.1103/PhysRevA.32.506]CrossRefGoogle Scholar
  12. Wichmann, M.H.G., Buschhorn, S.T., Gehrmann, J., Schulte, K., 2009. Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Physical Review B, 80(24):245437. [doi:10.1103/PhysRevB.80.245437]CrossRefGoogle Scholar
  13. Yang, J.H., Xu, T., Lu, A., Zhang, Q., Fu, Q., 2008. Electrical properties of poly(phenylene sulfide)/multiwalled carbon nanotube composites prepared by simple mixing and compression. Journal of Applied Polymer Science, 109(2): 720–726. [doi:10.1002/app.28098]CrossRefGoogle Scholar
  14. Zhang, X.W., Pan, Y., Zheng, Q., Yi, X.S., 2000. Time dependence of piezoresistance for the conductor filled polymer composites. Journal of Polymer Science Part B Polymer Physics, 38(21):2739–2749. [doi:10.1002/1099-0488(20001101)38:21]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Applied Mechanics Laboratory, Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.Institute of Applied MechanicsZhejiang UniversityHangzhouChina

Personalised recommendations