Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 12, Issue 2, pp 139–145 | Cite as

Performance of a single-stage auto-cascade refrigerator operating with a rectifying column at the temperature level of −60 °C

  • Qin Wang
  • Kang Cui
  • Teng-fei Sun
  • Guang-ming Chen
Article

Abstract

This paper proposes a new approach to the performance optimization of an auto-cascade refrigerator (ACR) operating with a rectifying column and six types of binary refrigerants (R23/R134a, R23/R227ea, R23/R236fa, R170/R290, R170/R600a, and R170/R600) at a temperature level of −60 °C. Half of the six binary refrigerants are nonflammable, of which the 0.5 and the 0.6 mole fractions of R23 for the R23/R236fa possess the most prospective composition for the medium and low suction pressure compressors, respectively. The remaining three binary refrigerants are flammable but with low global warming potentials, of which the 0.6 mole fraction of R170 for the R170/R600 is the most prospective one. The results show that the overall matching as well as local matching of heat capacity rates of hot and cold refrigerants in the recuperators are important for the improvement of coefficient of performance of the cycle, which can be adjusted through the simultaneous optimization of the pressure level and composition. The new approach proposed also offers a wider range of applications to the optimization in performance of the cycle using multi-component refrigerants.

Key words

Auto-cascade Binary refrigerant Refrigerator Optimization 

CLC number

TB6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calm, J.M., Hourahan, G.C., 2007. Refrigerant data update. Heating/Piping/Air Conditioning Engineering, 79(1):50–64.Google Scholar
  2. Chen, G.M., 2000. Crycooler. China Patent No. 992037700.Google Scholar
  3. Desmarteau, D.D., Beyerlein, A.L., 1996. New Chemical Alternatives for the Protection of Stratospheric Ozone. EPA Project Summary, EPA/600/SR-95/113, National Risk Management Research Laboratory, Cincinnati, USA.Google Scholar
  4. Khatri, A., Boiarski, M., 2008. Development of JT Coolers Operating at Cryogenic Temperatures with Nonflammable Mixed Refrigerants. AIP Conference Proceedings, 53:3–10. [doi:10.1063/1.2908574]CrossRefGoogle Scholar
  5. Kleemenko, A.P., 1959. One-Flow Cascade Cycle. Proceedings of Xth International Congress of Refrigeration, Copenhagen, Denmark, 1:34–39.Google Scholar
  6. Little, W.A., 1997. Self-Cleaning Low Temperature Refrigeration System. US Patent No. 5617739.Google Scholar
  7. Missimer, D.J., 1973. Self-Balancing Low Temperature Refrigeration System. US Patent No. 3768275.Google Scholar
  8. Missimer, D.J., 1997. Refrigerant conversion of autorefrigerating cascade (ARC) systems. International Journal of Refrigeration, 20(3):201–207.CrossRefGoogle Scholar
  9. NIST (National Institute of Science and Technology), 2007. Standard Reference Database 23, Version 8.0, USA.Google Scholar
  10. Podbielniak, W.J., 1936. Art of Refrigeration. US Patent No. 2041725.Google Scholar
  11. Rozhentsev, A., Naer, V., 2009. Investigation of the starting modes of the low-temperature refrigerating machines working on the mixtures of refrigerants. International Journal of Refrigeration, 32(5):901–910. [doi:10.1016/j.ijrefrig.2008.11.005]CrossRefGoogle Scholar
  12. Wang, Q., Chen, G.M., 2003. Analysis of Features of J-T Refrigeration Cycles Using Mixed Refrigerants with an Infinite Low Temperature Heat Reservoir. Cryogenics and Refrigeration-Proceedings of ICCR, Hangzhou, China, p.327–330.Google Scholar
  13. Wang, Q., Cui, K., Sun, T.F., Chen, F.C., Chen, G.M., 2010. Performance of a single-stage Linde-Hampson refrigerator operating with binary refrigerants at the temperature level of −60°C. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(2): 115–127. [doi:do]10.1631/jzus.A0900208]CrossRefMATHGoogle Scholar
  14. Zhang, S.Z., Wu, D.B., Chen, G.M., 2010. Experimental study on a cryosurgery apparatus. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(2):128–131. [doi:do]10.1631/jzus.A0900071]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Qin Wang
    • 1
  • Kang Cui
    • 1
  • Teng-fei Sun
    • 1
  • Guang-ming Chen
    • 1
  1. 1.Institute of Refrigeration and Cryogenics, State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina

Personalised recommendations