Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 9, pp 1277–1284 | Cite as

Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling

  • Zhi-hua Gan
  • Zhuo-pei Li
  • Jie Chen
  • Li Dai
  • Li-min Qiu
Article

Abstract

A Stirling-type pulse tube cryocooler (PTC) with precooling was designed and manufactured to investigate its performance at 4 K. Numerical simulation was carried out based on the well-known regenerator model REGEN with an emphasis on the performance of a 4 K stage regenerator of the Stirling-type PTC as influenced by the warm end temperature, pressure ratio, frequency and average pressure with helium-4 and helium-3 as the working fluid respectively. This study demonstrates that the use of a cold inertance tube can significantly improve the efficiency of a 4 K Stirling-type PTC. A preliminary experimental investigation was carried out with helium-4 as the working fluid and a refrigeration temperature of 4.23 K was achieved. The experimental results show that the operating frequency has a significant influence on the performance of the Stirling-type PTC and a relatively low average pressure is favorable for decreasing the loss associated with the real gas effects of a 4 K Stirling-type PTC.

Key words

Stirling-type pulse tube cryocooler (PTC) Regenerator Helium-3 Cold inertance tube 4 K 

CLC number

TK123 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dai, L., Gan, Z.H., Qiu, L.M., Zhang, X.B., Zhang, X.J., 2007. Design of 30 Hz regenerator operating at liquid helium temperatures. Cryogenic Engineering, suppl:194–199 (in Chinese).Google Scholar
  2. Gan, Z.H., Liu, G.J., Wu, Y.Z., Cao, Q., Qiu, L.M., Chen, G.B., Pfotenhauer, J.M., 2008. Study on a 5.0 W/80 K single stage Stirling type pulse tube cryocooler. Journal of Zhejiang University SCIENCE A, 9(9):1277–1282. [doi:10.1631/jzus.A0820220]CrossRefMATHGoogle Scholar
  3. Gan, Z.H., Dong, W.Q., Qiu, L.M., Zhang, X.B., Sun, H., He, Y.L., Radebaugh, R., 2009. A single-stage GM-type pulse tube cryocooler operating at 10.6 K. Cryogenics, 49(5):198–201. [doi:10.1016/j.cryogenics.2009.01.004]CrossRefGoogle Scholar
  4. Huang, Y.H., Chen, G.B., Arp, V.D., 2006. Equation of state for fluid helium-3 based on Debye phonon model. Applied Physics Letters, 88(9):091905. [doi:10.1063/1.2178867]Google Scholar
  5. Jiang, N., Lindemann, F., Giebeler, F., Thummes, G., 2004. A 3He pulse tube cooler operating down to 1.3 K. Cryogenics, 44(11):809–816. [doi:10.1016/j.cryogenics.2004.05.003]CrossRefGoogle Scholar
  6. Nast, T., Olson, J., Champagne, P., Evtimov, B., Frank, D., Roth, E., Renna, T., 2006. Overview of Lockheed Martin cryocoolers. Cryogenics, 46(2–3):164–168. [doi:10.1016/j.cryogenics.2005.12.006]CrossRefGoogle Scholar
  7. Nast, T., Olson, J., Roth, E., Evtimov, B., Frank, D., Champagne, P., 2007. Development of Remote Cooling Systems for Low-temperature, Space-borne Systems. Cryocoolers 14th International Cryocooler Conference, CO, USA, p.33–40.Google Scholar
  8. Nast, T., Olson, J., Champagne, P., Mix, J., Evtimov, B., Roth, E., Collaco, A., 2008. Development of a 4.5 K Pulse Tube Cryocooler for Superconducting Electronics. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 53:881–886. [doi:10.1063/1.2908684]CrossRefGoogle Scholar
  9. Olson, J., Champagne, P., Roth, E., Evtimov, B., Clappier, R., Nast, T., Renna, T., Martin, B., 2005. Lockheed Martin 6 K/18 K Cryocooler. Cryocoolers 13th Springer Science & Business Media, NY, USA, p.25–30. [doi:10.1007/0-387-27533-9_4]Google Scholar
  10. Olson, J.R., Moore, M., Champagne, P., Roth, E., Evtimov, B., Jensen, J., Collaco, A., Nast, T., 2006. Development of a Space-type 4-stage Pulse Tube Cryocooler for Very Low Temperature. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 51:623–631. [doi:10.1063/1.2202468]CrossRefGoogle Scholar
  11. Qiu, L.M., He, Y.L., Gan, Z.H, Wang, L.H., Chen, G.B., 2005. A separate two-stage pulse tube cooler working at liquid Helium temperature. Chinese Science Bulletin, 50(10):1030–1033. [doi:10.1360/982005-187]CrossRefGoogle Scholar
  12. Qiu, L.M., Li, Z.P., Gan, Z.H., Dai, L., 2008. Design of a 4 K Single-stage Stirling Type Pulse Tube Cooler Precooled by a G-M Type Pulse Tube Cooler. International Conference on Cryogenics and Refrigeration, Beijing, China, p.313–316.Google Scholar
  13. Radebaugh, R., O’Gallagher, A., 2006. Regenerator Operation at Very High Frequencies for Micro-cryocoolers. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 51:1919–1928. [doi:10.1063/1.2202623]CrossRefGoogle Scholar
  14. Radebaugh, R., O’Gallagher, A., Gary, J., 2002. Regenerator Behavior at 4 K: Effect of Volume and Porosity. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 47:961–968. [doi:10.1063/1.1472117]CrossRefGoogle Scholar
  15. Radebaugh, R., Lewis, M., Luo, E.C., Pfotenhauer, J.M., Nellis, G.F., Schunk, L.A., 2006. Inertance Tube Optimization for Pulse Tube Refrigerators. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 51:59–67. [doi:10.1063/1.2202401]CrossRefGoogle Scholar
  16. Radebaugh, R., Huang, Y.H., O’Gallagher, A., Gary, J., 2008. Calculated Regenerator Performance at 4 K with Helium-4 and Helium-3. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 53:225–234. [doi:10.1063/1.2908551]CrossRefGoogle Scholar
  17. Radebaugh, R., Huang, Y., O’Gallagher, A., Gary, J., 2009. Calculated Performance of Low-porosity Regenerators at 4 K with He-4 and He-3. Cryocoolers 15th International Cryocooler Conference, CO, USA, p.325–334.Google Scholar
  18. Ross, R.G.Jr., 2005. A Study of the Use of 6 K ACTDP Cryocoolers for the MIRI Instrument on JWST. Cryocoolers 13th Springer Science & Business Media, NY, USA, p.15–24. [doi:10.1007/0-387-27533-9_3]Google Scholar
  19. Ross, R.G.Jr., Boyle, R.F., 2003. NASA Space Cryocooler Programs—An Overview. Cryocoolers 12, Kluwer Academic/Plenum Publishers, NY, USA, p.1–8. [doi:10.1007/0-306-47919-2_1]CrossRefGoogle Scholar
  20. Ross, R.G.Jr., Johnson, D.L., 2006. NASA’s Advanced Cryocooler Technology Development Program (ACTDP). Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 51:607–614. [doi:10.1063/1.2202466]CrossRefGoogle Scholar
  21. Ross, R.G.Jr., Boyle, R.F., 2007. An Overview of NASA Space Cryocooler Programs-2006. Cryocoolers 14th International Cryocooler Conference, CO, USA, p.1–10.Google Scholar
  22. Webber, R.J., Dotsenko, V.V., Delmas, J., Kadin, A.M., Track, E.K., 2009. Evaluation of a 4 K 4-stage Pulse Tube Cryocooler for Superconducting Electronics. Cryocoolers 15th International Cryocooler Conference, CO, USA, p.657–664.Google Scholar
  23. Xu, M.Y., de Waele, A.T.A.M., Ju, Y.L., 1999. A pulse tube refrigerator below 2 K. Cryogenics, 39(10):865–869. [doi:10.1016/S0011-2275(99)00101-0]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Zhi-hua Gan
    • 1
  • Zhuo-pei Li
    • 1
  • Jie Chen
    • 1
  • Li Dai
    • 1
  • Li-min Qiu
    • 1
  1. 1.Institute of Refrigeration and CryogenicsZhejiang UniversityHangzhouChina

Personalised recommendations