Skip to main content
Log in

Two-parameter characterization of low cycle, hysteretic fatigue data

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The aim of this research is to characterize the development of fatigue damage by means of stress-strain hysteresis. Experiments were conducted on 14 specimens made of cold-finished unannealed AISI 1018 steel. Results demonstrate that the mechanical hysteresis loop areas, when plotted as a function of the number of loading cycles, show significant variations and demonstrate the three principal stages concerning the progress of the fatigue failure—initial accommodation, accretion of damage and terminal failure. These three stages of fatigue are marked by the transitions at cycles N 2 and N 3. Experimental results show that although fatigue life N f ranges from 2644 cycles to 108 992 cycles, the ratios of N 2/N f and N 3/N f tend to be stable: N 2/N f=10.7%, N 3/N f=91.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agar, B.B., 1998. Hysteresis and Low Cycle Fatigue in Selected Aluminum Alloys. MS Thesis, Illinois Institute of Technology, Chicago, IL.

    Google Scholar 

  • American Society for Metals (II-1986), 1986. Metals Handbook. Carnes Publication Services Inc., USA.

    Google Scholar 

  • Bannantine, J.A., Comer, J.J., Handrock, J.L., 1990. Fundamentals of Metal Fatigue Analysis. Prentice Hall, New Jersey.

    Google Scholar 

  • Bao, S., 2004. Two-parameter Characterization of Low Cycle, Hysteretic Fatigue Data. MS Thesis, Illinois Institute of Technology, Chicago, IL.

    Google Scholar 

  • Bao, S., 2007. Fatigue, Mechanical and Magnetic Hysteresis. PhD Thesis, Illinois Institute of Technology, Chicago, IL.

    Google Scholar 

  • Berktan, T., 1998. Piezomagnetism and Fatigue. MS Thesis, Illinois Institute of Technology, Chicago, IL.

    Google Scholar 

  • Bily, M., 1993. Cyclic Deformation and Fatigue of Metals. Elsevier, Amsterdam, Germany.

    Google Scholar 

  • Chrysochoos, A., Berthel, B., Latourte, F., Pagano, S., Wattrisse, B., Weber, B., 2008. Local energy approach to fatigue of steel. Strain, 44(4):327–334. [doi:10.1111/j. 1475-1305.2007.00381.x]

    Article  Google Scholar 

  • Desai, R.D., 1994. Origin and Inception of Fatigue Damage in Steel. MS Thesis, Illinois Institute of Technology, Chicago, IL.

    Google Scholar 

  • Dieter, G.E., 1988. Mechanical Metallurgy. McGraw-Hill Book Company, New York, USA.

    Google Scholar 

  • Erber, T., 2001. Hooke’s law and fatigue limits in micromechanics. European Journal of Physics, 22(5):491–499. [doi:10.1088/0143-0807/22/5/305]

    Article  Google Scholar 

  • Erber, T., Guralnick, S.A., Michels, S.C., 1993. Hysteresis and fatigue. Annals of Physics, 224(2):157–192. [doi:10.1006/aphy.1993.1043]

    Article  MathSciNet  MATH  Google Scholar 

  • Erber, T., Guralnick, S.A., Desai, R.D., Kwok, W., 1997. Piezomagnetism and fatigue. Journal of Physics D: Applied Physics, 30(20):2818–2836.

    Article  Google Scholar 

  • Feltner, C., Morrow, J., 1961. Microplastic strain hysteresis energy as a criterion for fatigue fracture. Journal of Basic Engineering, Transaction on ASME, Series D, 83:15–22.

    Article  Google Scholar 

  • Giancane, S., Chrysochoos, A., Dattoma, V., Wattrisse, B., 2009. Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy. Theoretical and Applied Fracture Mechanics, 52(2):117–121. [doi:10.1016/j.tafmec.2009.08.004]

    Article  Google Scholar 

  • Giancane, S., Panella, F.W., Dattoma, V., 2010. Characterization of fatigue damage in long fiber epoxy composite laminates. International Journal of Fatigue, 32(1):46–53. [doi:10.1016/j.ijfatigue.2009.02.024]

    Article  Google Scholar 

  • Guralnick, S.A., Bao, S., Erber, T., 2008. Piezomagnetism and fatigue: II. Journal of Physics D: Applied Physics, 41(11):115006. [doi:10.1088/0022-3727/41/11/115006]

    Article  Google Scholar 

  • Halford, G.R., 1966. The energy required for fatigue. Journal of Materials, 1(1):3–18.

    Google Scholar 

  • Kachanov, L.M., 1986. Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Dordrecht, the Netherlands.

    Book  MATH  Google Scholar 

  • Lemaitre, J., Chaboche, J.L., 1990. Mechanics of Solid Materials. Cambridge University Press, Cambridge, UK.

    Book  MATH  Google Scholar 

  • Martin, D., 1961. An energy criterion for low-cycle fatigue. Journal of Basic Engineering, Transaction on ASME, Series D, 83:565–571.

    Article  Google Scholar 

  • Michels, S., 1991. Hysteresis and Fatigue. MS Thesis, Illinois Institute of Technology, Chicago, IL.

    MATH  Google Scholar 

  • Miner, M.A., 1945. Cumulative Damage in Fatigue. Journal of Applied Mechnics, 12:159–164.

    Google Scholar 

  • Peyroux, R., Chrysochoos, A., Licht, C., Lobel, M., 1998. Thermomechanical coupling and pseudelasticity of shape memory alloys. International Journal of Engineering Science, 36(4):489–509. [doi:10.1016/S0020-7225(97) 00052-9]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Bao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50901067), the Technological Research and Development Programs of the Ministry of Railways of China (No. 20101007-EG), and the Julian S. SCHWINGER Foundation, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, S., Jin, Wl., Guralnick, S.A. et al. Two-parameter characterization of low cycle, hysteretic fatigue data. J. Zhejiang Univ. Sci. A 11, 449–454 (2010). https://doi.org/10.1631/jzus.A0900763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900763

Key words

CLC number

Navigation