Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 11, Issue 6, pp 449–454 | Cite as

Two-parameter characterization of low cycle, hysteretic fatigue data

  • Sheng Bao
  • Wei-liang Jin
  • Sidney A. Guralnick
  • Thomas Erber
Article

Abstract

The aim of this research is to characterize the development of fatigue damage by means of stress-strain hysteresis. Experiments were conducted on 14 specimens made of cold-finished unannealed AISI 1018 steel. Results demonstrate that the mechanical hysteresis loop areas, when plotted as a function of the number of loading cycles, show significant variations and demonstrate the three principal stages concerning the progress of the fatigue failure—initial accommodation, accretion of damage and terminal failure. These three stages of fatigue are marked by the transitions at cycles N2 and N3. Experimental results show that although fatigue life Nf ranges from 2644 cycles to 108 992 cycles, the ratios of N2/Nf and N3/Nf tend to be stable: N2/Nf=10.7%, N3/Nf=91.3%.

Key words

Hysteresis loss Fatigue life Fatigue damage 

CLC number

TB302.5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agar, B.B., 1998. Hysteresis and Low Cycle Fatigue in Selected Aluminum Alloys. MS Thesis, Illinois Institute of Technology, Chicago, IL.Google Scholar
  2. American Society for Metals (II-1986), 1986. Metals Handbook. Carnes Publication Services Inc., USA.Google Scholar
  3. Bannantine, J.A., Comer, J.J., Handrock, J.L., 1990. Fundamentals of Metal Fatigue Analysis. Prentice Hall, New Jersey.Google Scholar
  4. Bao, S., 2004. Two-parameter Characterization of Low Cycle, Hysteretic Fatigue Data. MS Thesis, Illinois Institute of Technology, Chicago, IL.Google Scholar
  5. Bao, S., 2007. Fatigue, Mechanical and Magnetic Hysteresis. PhD Thesis, Illinois Institute of Technology, Chicago, IL.Google Scholar
  6. Berktan, T., 1998. Piezomagnetism and Fatigue. MS Thesis, Illinois Institute of Technology, Chicago, IL.Google Scholar
  7. Bily, M., 1993. Cyclic Deformation and Fatigue of Metals. Elsevier, Amsterdam, Germany.Google Scholar
  8. Chrysochoos, A., Berthel, B., Latourte, F., Pagano, S., Wattrisse, B., Weber, B., 2008. Local energy approach to fatigue of steel. Strain, 44(4):327–334. [doi:10.1111/j. 1475-1305.2007.00381.x]CrossRefGoogle Scholar
  9. Desai, R.D., 1994. Origin and Inception of Fatigue Damage in Steel. MS Thesis, Illinois Institute of Technology, Chicago, IL.Google Scholar
  10. Dieter, G.E., 1988. Mechanical Metallurgy. McGraw-Hill Book Company, New York, USA.Google Scholar
  11. Erber, T., 2001. Hooke’s law and fatigue limits in micromechanics. European Journal of Physics, 22(5):491–499. [doi:10.1088/0143-0807/22/5/305]CrossRefGoogle Scholar
  12. Erber, T., Guralnick, S.A., Michels, S.C., 1993. Hysteresis and fatigue. Annals of Physics, 224(2):157–192. [doi:10.1006/aphy.1993.1043]MathSciNetCrossRefMATHGoogle Scholar
  13. Erber, T., Guralnick, S.A., Desai, R.D., Kwok, W., 1997. Piezomagnetism and fatigue. Journal of Physics D: Applied Physics, 30(20):2818–2836.CrossRefGoogle Scholar
  14. Feltner, C., Morrow, J., 1961. Microplastic strain hysteresis energy as a criterion for fatigue fracture. Journal of Basic Engineering, Transaction on ASME, Series D, 83:15–22.CrossRefGoogle Scholar
  15. Giancane, S., Chrysochoos, A., Dattoma, V., Wattrisse, B., 2009. Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy. Theoretical and Applied Fracture Mechanics, 52(2):117–121. [doi:10.1016/j.tafmec.2009.08.004]CrossRefGoogle Scholar
  16. Giancane, S., Panella, F.W., Dattoma, V., 2010. Characterization of fatigue damage in long fiber epoxy composite laminates. International Journal of Fatigue, 32(1):46–53. [doi:10.1016/j.ijfatigue.2009.02.024]CrossRefGoogle Scholar
  17. Guralnick, S.A., Bao, S., Erber, T., 2008. Piezomagnetism and fatigue: II. Journal of Physics D: Applied Physics, 41(11):115006. [doi:10.1088/0022-3727/41/11/115006]CrossRefGoogle Scholar
  18. Halford, G.R., 1966. The energy required for fatigue. Journal of Materials, 1(1):3–18.Google Scholar
  19. Kachanov, L.M., 1986. Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Dordrecht, the Netherlands.CrossRefMATHGoogle Scholar
  20. Lemaitre, J., Chaboche, J.L., 1990. Mechanics of Solid Materials. Cambridge University Press, Cambridge, UK.CrossRefMATHGoogle Scholar
  21. Martin, D., 1961. An energy criterion for low-cycle fatigue. Journal of Basic Engineering, Transaction on ASME, Series D, 83:565–571.CrossRefGoogle Scholar
  22. Michels, S., 1991. Hysteresis and Fatigue. MS Thesis, Illinois Institute of Technology, Chicago, IL.MATHGoogle Scholar
  23. Miner, M.A., 1945. Cumulative Damage in Fatigue. Journal of Applied Mechnics, 12:159–164.Google Scholar
  24. Peyroux, R., Chrysochoos, A., Licht, C., Lobel, M., 1998. Thermomechanical coupling and pseudelasticity of shape memory alloys. International Journal of Engineering Science, 36(4):489–509. [doi:10.1016/S0020-7225(97) 00052-9]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sheng Bao
    • 1
  • Wei-liang Jin
    • 1
  • Sidney A. Guralnick
    • 2
  • Thomas Erber
    • 3
    • 4
  1. 1.Institute of Structural EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Civil EngineeringIllinois Institute of TechnologyChicagoUSA
  3. 3.Department of PhysicsIllinois Institute of TechnologyChicagoUSA
  4. 4.Department of Applied MathematicsIllinois Institute of TechnologyChicagoUSA

Personalised recommendations