Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 11, Issue 1, pp 1–8 | Cite as

Temporal variation in modal properties of a base-isolated building during an earthquake

Article

Abstract

Temporal variation of dynamical modal properties of a base-isolated building is investigated using earthquake records in the building. A batch processing least-squares estimation method is applied to segment-wise time-series data. To construct an input-output system, an auto-regressive model with exogenous input (ARX) of second-order including a forgetting coefficient as a weighting coefficient is used for the estimation of modal parameters. The fundamental and second natural frequencies and the damping ratios of the fundamental and second natural modes of the base-isolated building are identified in the time domain. The identified results are consistent with the results obtained from the micro-tremor vibration data, forced-vibration test data and earthquake records in the present base-isolated building in the case of taking into account the amplitude-dependency of the isolators and viscous dampers. It is finally pointed out that several factors, e.g., amplitude dependency of the isolator and damper system and special characteristics of the series-type viscous damper system, may be related complicatedly with the temporal variation in modal properties of the above-mentioned system.

Key words

System identification Shear building model Modal parameters Batch processing least-squares estimation method Forgetting coefficient Auto-regressive model with exogenous input (ARX) model 

CLC number

P315 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbabian, M.S., Masri, S.F., Miller, R.K., Caughey, T.K., 1991. System identification approach to detection of structural changes. Journal of Engineering Mechanics, ASCE, 117(2):370–390. [doi:10.1061/(ASCE)0733-9399(1991)117:2(370)]CrossRefGoogle Scholar
  2. Beck, J.L., Jennings, P.C., 1980. Structural identification using linear models and earthquake records. Earthquake Engineering & Structural Dynamics, 8(2):145–160. [doi:10.1002/eqe.4290080205]CrossRefGoogle Scholar
  3. Davenport, A.G., Hill-Carroll, P., 1986. Damping in Tall Buildings: Its Variability and Treatment in Design. Proceedings of ASCE Spring Convention, Seattle, USA, p.42–57.Google Scholar
  4. Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W., 1996. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. Report No. LA-13070-MS, Los Alamos National Laboratory, NM, USA.Google Scholar
  5. Ghanem, R., Shinozuka, M., 1995. Structural-system identification I: Theory. Journal of Engineering Mechanics, ASCE, 121(2):255–264. [doi:10.1061/(ASCE)0733-9399(1995)121:2(255)]CrossRefGoogle Scholar
  6. Hart, G.C., Vasudevan, R., 1975. Earthquake design of buildings: Damping. Journal of the Structural Division, ASCE, 101(ST1):11–30.Google Scholar
  7. Hart, G.C., Yao, J.T.P., 1977. System identification in structural dynamics. Journal of the Engineering Mechanics Division, ASCE, 103(EM6):1089–1104.Google Scholar
  8. Herrmann, T., Pradlwarter, H.J., 1998. Two-step identification approach for damped finite element models. Journal of Engineering Mechanics, ASCE, 124(6):639–647. [doi:10.1061/(ASCE)0733-9399(1998)124:6(639)]CrossRefGoogle Scholar
  9. Hjelmstad, K.D., 1996. On the uniqueness of modal parameter estimation. Journal of Sound and Vibration, 192(2):581–598. [doi:10.1006/jsvi.1996.0205]MathSciNetCrossRefMATHGoogle Scholar
  10. Hjelmstad, K.D., Banan, M.R., Banan, M.R., 1995. On building finite element models of structures from modal response. Earthquake Engineering & Structural Dynamics, 24(1):53–67. [doi:10.1002/eqe.4290240105]CrossRefMATHGoogle Scholar
  11. Hoshiya, M., Saito, E., 1984. Structural identification by extended Kalman filter. Journal of Engineering Mechanics, ASCE, 110(12):1757–1770. [doi:10.1061/(ASCE)0733-9399(1984)110:12(1757)]CrossRefGoogle Scholar
  12. Housner, G., 1997. Special issue, structural control: past, present, and future. Journal of Engineering Mechanics, ASCE, 123(9):897–971. [doi:10.1061/(ASCE)0733-9399(1997)123:9(897)]CrossRefGoogle Scholar
  13. Inaudi, J.A., Kelly, J.M., 1995. Linear hysteretic damping and the Hilbert transform. Journal of Engineering Mechanics, ASCE, 121(5):626–632. [doi:10.1061/(ASCE)0733-9399(1995)121:5(626)]CrossRefGoogle Scholar
  14. Kareem, A., Gurley, K., 1996. Damping in structures: Its evaluation and treatment of uncertainty. Journal of Wind Engineering and Industrial Aerodynamics, 59(2–3):131–157. [doi:10.1016/0167-6105(96)00004-9]CrossRefGoogle Scholar
  15. Kitada, Y., 1998. Identification of nonlinear structural dynamic systems using wavelets. Journal of Engineering Mechanics, ASCE, 124(10):1059–1066.CrossRefGoogle Scholar
  16. Koh, C.G., See, L.M., Balendra, T., 1991. Estimation of structural parameters in time domain: a substructure approach. Earthquake Engineering & Structural Dynamics, 20(8):787–801. [doi:10.1002/eqe.4290200806]CrossRefGoogle Scholar
  17. Lus, H., Betti, R., Longman, R.W., 1999. Identification of linear structural systems using earthquake-induced vibration data. Earthquake Engineering & Structural Dynamics, 28(11):1449–1467. [doi:10.1002/(SICI)1096-9845(199911)28:11<1449::AID-EQE881>3.0.CO;2-5]CrossRefGoogle Scholar
  18. Masri, S.F., Nakamura, M., Chassiakos, A.G., Caughey, T.K., 1996. A neural network approach to the detection of changes in structural parameters. Journal of Engineering Mechanics, ASCE, 122(4):350–360. [doi:10.1061/(ASCE)0733-9399(1996)122:4(350)]CrossRefGoogle Scholar
  19. Mendel, J.M., 1995. Lessons in Estimation Theory for Signal Processing, Communications, and Control (2nd Ed.). Prentice Hall, New Jersey.MATHGoogle Scholar
  20. Nakamura, M., Takewaki, I., 2002. System Identification Method for Interstory Stiffness and Damping through Limited Observation: Application to Ambient Vibration and Robustness for Noise. Summaries of Annual Meeting of AIJ, Structure II, p.291–292 (in Japanese).Google Scholar
  21. Nakamura, M., Takewaki, I., 2005. Evaluation of Time-variance of Dynamic Properties of a Base-isolated Building during an Earthquake. Summaries of Annual Meeting of AIJ, Structure II, p.675–676 (in Japanese).Google Scholar
  22. Nakamura, M., Takewaki, I., Yasui, Y., Uetani, K., 1998. System Identification Method for Interstory Stiffness and Damping through Limited Observation: Application to Ambient Vibration and Robustness for Noise. Summaries of Annual Meeting of AIJ, Structure II, p.291–292 (in Japanese).Google Scholar
  23. Nashif, A.D., Jones, D.I.G., Henderson, J.P., 1985. Vibration Damping. John Wiley & Sons, New York.Google Scholar
  24. Safak, E., 1989. Adaptive modeling, identification, and control of dynamic structural systems I: Theory. Journal of Engineering Mechanics, ASCE, 115(11):2386–2405. [doi:10.1061/(ASCE)0733-9399(1989)115:11(2386)]CrossRefGoogle Scholar
  25. Satake, N., Suda, K., Arakawa, T., Sasaki, A, Tamura, Y., 2003. Damping evaluation using full-scale data of buildings in Japan. Journal of Structural Engineering, ASCE, 129(4):470–477. [doi:10.1061/(ASCE)0733-9445(2003)129:4(470)]CrossRefGoogle Scholar
  26. Shinozuka, M., Ghanem, R., 1995. Structural-system identification II: Experimental verification. Journal of Engineering Mechanics, ASCE, 121(2):265–273. [doi:10.1061/(ASCE)0733-9399(1995)121:2(265)]CrossRefGoogle Scholar
  27. Stewart, J.P., Conte, J.P., Aiken, I.D., 1999. Observed behavior of seismically isolated buildings. Journal of Structural Engineering, ASCE, 125(9):955–964. [doi:10.1061/(ASCE)0733-9445(1999)125:9(955)]CrossRefGoogle Scholar
  28. Takewaki, I., Nakamura, M., 2000. Stiffness-damping simultaneous identification using limited earthquake records. Earthquake Engineering and Structural Dynamics, 29(8):1219–1238. [doi:10.1002/1096-9845(200008)29:8<1219::AID-EQE968>3.3.CO;2-O]CrossRefGoogle Scholar
  29. Takewaki, I., Nakamura, M., 2005. Stiffness-damping simultaneous identification under limited observation. Journal of Engineering Mechanics, ASCE, 131(10):1027–1035. [doi:10.1061/(ASCE)0733-9399(2005)131:10(1027)]CrossRefGoogle Scholar
  30. Yao, J.T.P., Natke, H.G., 1994. Damage detection and reliability evaluation of existing structures. Structural Safety, 15(1–2):3–16. [doi:10.1016/0167-4730(94)90049-3]CrossRefGoogle Scholar
  31. Yoshitomi, S., Takewaki, I., 2009. Noise-effect compensation method for physical-parameter system identification under stationary random input. Structural Control and Health Monitoring, 16(3):350–373. [doi:10.1002/stc.263]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Urban and Environmental Engineering, Graduate School of EngineeringKyoto UniversityNishikyo, KyotoJapan
  2. 2.Technical Research InstituteObayashi CorporationTokyoJapan

Personalised recommendations