Skip to main content
Log in

Model predictive control for adaptive cruise control with multi-objectives: comfort, fuel-economy, safety and car-following

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

For automated vehicles, comfortable driving will improve passengers’ satisfaction. Reducing fuel consumption brings economic profits for car owners, decreases the impact on the environment and increases energy sustainability. In addition to comfort and fuel-economy, automated vehicles also have the basic requirements of safety and car-following. For this purpose, an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework. In the proposed ACC algorithm, safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy. The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments. The results show that not only are safety and car-following objectives satisfied, but also driving comfort and fuel-economy are improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bageshwar, V.L., Garrard, W.L., Rajamani, R., 2004. Model predictive control of transitional maneuvers for adaptive cruise control vehicles. IEEE Transactions on Vehicular Technology, 53(5):1573–1585. [doi:10.1109/TVT.2004.833625]

    Article  Google Scholar 

  • Barth, M., Scora, G., Younglove, T., 2004. Modal emissions model for heavy-duty diesel vehicles. Transportation Research Record, 1880(1):10–20. [doi:10.3141/1880-02]

    Article  Google Scholar 

  • Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N., 2002. The explicit linear quadratic regulator for constrained systems. Automatica, 38(1):3–20. [doi:10.1016/S0005-1098(01)00174-1]

    Article  MATH  MathSciNet  Google Scholar 

  • Bose, A., Ioannou, P., 2001. Analysis of Traffic Flow with Mixed Manual and Intelligent Cruise Control (ICC) Vehicles: Theory and Experiments. California PATH Report, UCB-ITS-PRR-2001-13.

  • Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University, New York.

    MATH  Google Scholar 

  • Crew, H., 2008. The Principles of Mechanics. BiblioBazaar, p.43.

  • Hiraoka, T., Kunimatsu, T., Nishihara, O., Kumamoto, H., 2005. Modeling of Driver Following Behavior Based on Minimum-jerk Theory. 12th World Congress on ITS, San Francisco, p.3416–3427.

  • Holzmann, H., Halfmann, C., Germann, S., Wurtenberger, M., Isermann, R., 1997. Longitudinal and lateral control and supervision of autonomous intelligent vehicles. Control Engineering Practice, 5(11):1599–1605. [doi:10.1016/S0967-0661(97)10015-6]

    Article  Google Scholar 

  • Ioannou, P.A., Stefanovic, M., 2005. Evaluation of ACC vehicles in mixed traffic: Lane change effects and sensitivity analysis. IEEE Transactions on Intelligent Transportation Systems, 6(1):79–89. [doi:10.1109/TITS.2005.844226]

    Article  Google Scholar 

  • Ioannou, P.A., Xu, Z., Eckert, S., Clemons, D., Sieja, T., 1993. Intelligent Cruise Control: Theory and Experiment. Proceedings of the 32nd IEEE Conference on Decision and Control, p.1885–1890. [doi:10.1109/CDC.1993.325521]

  • James, W.J., Neil, D.L., Steve, M., Scott, O., Brain, C.T., 2008. Use of Advanced In-vehicle Technology by Young and Older Early Adopters, Survey Results on Adaptive Cruise Control Systems. Report No. DOT HS 810 917. National Highway Traffic Safety Administration.

  • Jiang, R., Wu, Q.S., 2006. The adaptive cruise control vehicles in the cellular automata model. Physics Letters A, 359(2):99–102. [doi:10.1016/j.physleta.2006.06.015]

    Article  MATH  MathSciNet  Google Scholar 

  • Liang, C.Y., Peng, H., 1999. Optimal adaptive cruise control with guaranteed string stability. Vehicle System Dynamics, 32(4–5):313–330. [doi:10.1076/vesd.32.4.313.2083]

    Article  Google Scholar 

  • Martinez, J.J., Canudas-De-Wit, C., 2007. A safe longitudinal control for adaptive cruise control and stop-and-go scenarios. IEEE Transactions on Control Systems Technology, 15(2):246–258. [doi:10.1109/TCST.2006.886432]

    Article  Google Scholar 

  • Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M., 2000. Constrained model predictive control: Stability and optimality. Automatica, 36(6):789–814. [doi:10.1016/S0005-1098(99)00214-9]

    Article  MATH  MathSciNet  Google Scholar 

  • Naranjo, J.E., Gonzalez, C., Garcia, R., de Pedro, T., 2007. Cooperative throttle and brake fuzzy control for ACC+Stop&Go maneuvers. IEEE Transactions on Vehicular Technology, 56(4):1623–1630. [doi:10.1109/TVT.2007.897632]

    Article  Google Scholar 

  • Naus, G., van den Bleek, R., Ploeg, J., Scheepers, B., van de Molengraft, R., Steinbuch, M., 2008. Explicit MPC Design and Performance Evaluation of an ACC Stop&Go. American Control Conference, p.224–229. [doi:10.1109/ACC.2008.4586495]

  • Pasquier, M., Quek, C., Toh, M., 2001. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles. Neural Networks, 14(8):1099–1112. [doi:10.1016/S0893-6080(01)00048-X]

    Article  Google Scholar 

  • Rajamani, R., Zhu, C., 2002. Semi-autonomous adaptive cruise control systems. IEEE Transactions on Vehicular Technology, 51(5):1186–1192. [doi:10.1109/TVT.2002.800617]

    Article  Google Scholar 

  • Scora, G., Barth, M., 2006. User’s Guide: Comprehensive Modal Emissions Model (CMEM), Version 3.01. Available from http://pah.cert.ucr.edu/cmem/docs/CMEM_User_Guide_v3.01d.pdf [Accessed on June 20, 2009]

  • Sprott, J.C., 1997 Some simple chaotic jerk functions. American Journal of Physics, 65(6):536–543. [doi:10.1119/1.18585]

    Article  Google Scholar 

  • Vahidi, A., Eskandarian, A., 2003. Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 4(3):143–153. [doi:10.1109/TITS.2003.821292]

    Article  Google Scholar 

  • Yi, K.S., Chung, J.T., 2001. Nonlinear brake control for vehicle CW/CA systems. IEEE/ASME Transactions on Mechatronics, 6(1):17–25. [doi:10.1109/3516.914387]

    Article  Google Scholar 

  • Zhang, J., Ioannou, P.A., 2006. Longitudinal control of heavy trucks in mixed traffic: environmental and fuel economy considerations. IEEE Transactions on Intelligent Transportation Systems, 7(1):92–104. [doi:10.1109/TITS.2006.869597]

    Article  Google Scholar 

  • Zhou, J., Peng, H., 2005. Range policy of adaptive cruise control vehicles for improved flow stability and string stability. IEEE Transactions on Intelligent Transportation Systems, 6(2):229–237. [doi:10.1109/TITS.2005.848359]

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Additional information

Project supported by the National Hi-Tech Research and Development Program (863) of China (No. 2006AA11Z204), and the Qianjiang Program of Zhejiang Province (No. 2009R10008), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Lh., Liu, H., Li, P. et al. Model predictive control for adaptive cruise control with multi-objectives: comfort, fuel-economy, safety and car-following. J. Zhejiang Univ. Sci. A 11, 191–201 (2010). https://doi.org/10.1631/jzus.A0900374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900374

Key words

CLC number

Navigation