Skip to main content
Log in

Strengthening an in-service reinforcement concrete bridge with prestressed CFRP bar

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped reinforced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existing bridge after retrofit was discussed on the basis of concrete structures theory. The flexural strengths of RC beams strengthened with CFRP bars were controlled by the failure of concrete in compression and a prestressing method was applied in the retrofit. The field construction processes of strengthening with CFRP bars—including grouting cracks, cutting groove, grouting epoxy and embedding CFRP bars, surface treating, banding with the U-type CFRP sheets, releasing external prestressed steel tendons—were introduced in detail. In order to evaluate the effectiveness of this strengthening method, field tests using vehicles as live load were applied before and after the retrofit. The test results of deflection and concrete strain of the T-shaped beams with and without strengthening show that the capacity of the repaired bridge, including the bending strength and stiffness, is enhanced. The measurements of crack width also indicate that this strengthening method can enhance the durability of bridges. Therefore, the proposed strengthening technology is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdalla, H.A., 2002. Evaluation of deflection in concrete members reinforced with fiber reinforced polymer (FRP) bars. Composite Structures, 56(1):63–71. [doi:10.1016/S0263-8223(01)00188-X]

    Article  Google Scholar 

  • Abdelrahman, A.A., Rizkalla, S.H., 1997. Serviceability of concrete beams prestressed by carbon fiber reinforced plastic bars. ACI Structural Journal, 94(4):447–457.

    Google Scholar 

  • ACI (American Concrete Institute Committee) 318, 2002. Buliding Code Requirements for Structural Concrete and Commentary. ACI 318-02, Farmington Hills, MI, USA.

    Google Scholar 

  • ACI (American Concrete Institute Committee) 440, 2003. Guide for the Design and Construction of Concrete Reinforced with FRP Rebar. ACI 440.1R-03, Farmington Hills, MI, USA.

    Google Scholar 

  • Capozucca, R., 2007. Analysis of the experimental flexural behavior of concrete beam grid reinforced with CFRP bars. Composite Structures, 79(4):517–526. [doi:10.1016/j.compstruct.2006.02.011]

    Article  Google Scholar 

  • El-Salakawy, E., Benmokrane, B., Ragaby, A., Nadeau, D., 2005. Filed investigation on the first bridge deck slab reinforced with glass FRP bars constructed in Canada. Journal of Composites for Construction, 9(6):470–479. [doi:10.1061/(ASCE)1090-0268(2005)9:6(470)]

    Article  Google Scholar 

  • Eom, J., Novak, A.S., 2001. Live load distribution for steel girder bridge. Journal of Bridge Engineering, 6(6): 489–497. [doi:10.1061/(ASCE)1084-0702(2001)6:6(489)]

    Article  Google Scholar 

  • Fang, Z., Li, H.F., Peng, B., 2008. Mechanical behaviors of concrete beam of external prestressed CFRP tendons. China Journal of Highway and Transport, 21(3):40–47 (in Chinese).

    Google Scholar 

  • GB 50010, 2002. Design Codes of Concrete Structures. Ministry of Construction of China, Beijing.

    Google Scholar 

  • GB 50367, 2006. Strengthening Design Codes of Concrete Structures. Ministry of Construction of China, Beijing.

    Google Scholar 

  • Ha, G.J., Kim, Y.Y., Cho, C.G., 2008. Groove and embedding techniques using CFRP trapezoidal bar for strengthening of concrete structures. Engineering Structures, 30(4): 1067–1078. [doi:10.1016/j.eng-struct.2007.07.006]

    Article  Google Scholar 

  • JTG D60, 2004. General Specification for Highway Bridge and Culvert Design. Ministry of Communications of China, Beijing.

  • Matta, F., Nanni, A., Abdelrazaq, A., Gremel, D., Koch, R., 2009. Externally post-tensioned carbon FRP bar system for deflection control. Construction and Building Materials, 23(4):1628–1639. [doi:10.1016/j.conbuildmat.08.002]

    Article  Google Scholar 

  • Nayal, R., Rasheed, H.A., 2006. Tension stiffening model for concrete beam reinforced with steel and FRP bars. Journal of Materials in Civil Engineering, 18(6):831–841. [doi:10.1061/(ASCE)0899-1561(2006)18:6(831)]

    Article  Google Scholar 

  • Quantrill, R.J., Hollaway, L.C., 1998. The flexural rehabilitaprestressed advanced composite plates. Composites Science and Technology, 58(8):1259–1275. [doi:10.1016/S0266-3538(98)00002-5]

    Article  Google Scholar 

  • Rasheed, H.A., Nayal, R., Melhem, H., 2004. Response prediction of concrete beams reinforced with FRP bars. Composite Structures, 65(2):193–204. [doi:10.1016/j.comp-struct.2003.10.016]

    Article  Google Scholar 

  • Ross, C.A., Jerome, D.M., Tedesco, J.W., Mary, L., 1999. Strengthening of reinforced concrete beams with externally bonded composite laminates. ACI Structural Journal, 96(2):212–220.

    Google Scholar 

  • Shahawy, M., Chaalal, O., Beitelman, T.E., El-Saad, A., 2001. Flexural strengthening with carbon fiber-reinforced full-scale girders. ACI Structural Journal, 98(5):735–743.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-long Wang.

Additional information

Project supported by the National Hi-Tech Research and Development (863) Program of China (No. 2007AA04Z437), the National Natural Science Foundation of China (No. 50808158), the Zhejiang Provincial Natural Science Foundation of China (No. Y107049)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Hl., Jin, Wl., Cleland, D.J. et al. Strengthening an in-service reinforcement concrete bridge with prestressed CFRP bar. J. Zhejiang Univ. Sci. A 10, 635–644 (2009). https://doi.org/10.1631/jzus.A0820836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820836

Key words

CLC number

Navigation