Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 9, pp 1252–1262 | Cite as

Effects of a flexible joint on instability of a free-free jointed bipartite beam under the follower and transversal forces

Article

Abstract

This paper deals with the problem of the instability regions of a free-free flexible jointed bipartite beam under the follower and transversal forces as a realistic simulation of a two-stage aerospace structure. The aim of this study is to analyze the effects of the characteristics of a flexible joint on the beam instability to use maximum bearable propulsion force. A parametric study is conducted to investigate the effects of the stiffness and the location of the joint on the critical follower force by the Ritz method and the Newmark method, then to research the vibrational properties of the structure. It has been shown that the nature of instability is quite unpredictable and dependent on the stiffness and the location of the joint. The increase of the follower force or the transversal force will increase the vibration of the model and consequently cause a destructive phenomenon in the control system of the aerospace structure. Furthermore, this paper introduces a new concept of the parametric approach to analyze the characteristics effects of a flexible two-stage aerospace structure joint design.

Key words

Two stage to orbit launch vehicle (TSTO LV) Beam instability Follower force Ritz’s method Newmark’s method 

CLC number

O34 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attard, M.M., Lee, J.S., Kim, M.Y., 2008. Dynamic stability of shear-flexible beck’s columns based on Engesser’s and Haringx’s buckling theories. Computers and Structures, 86(21–22):2042–2055. [doi:10.1016/j.compstruc.2008.04.012]CrossRefGoogle Scholar
  2. Au, F.T.K., Zheng, D.Y., Cheung, Y.K., 1999. Vibration and stability of non-uniform beams with abrupt changes of cross-section by using C1 modified beam vibration functions. Applied Mathematical Modelling, 23(1):19–34. [doi:10.1016/S0307-904X(98)10045-8]CrossRefMATHGoogle Scholar
  3. Beal, T.R., 1965. Dynamic stability of a flexible missile under constant and pulsating thrusts. AIAA Journal, 3(3):486–494. [doi:10.2514/3.2891]CrossRefGoogle Scholar
  4. Bokaian, A., 1988. Natural frequencies of beam under compressive axial loads. Journal of Sound and Vibration, 126(1):49–65. [doi:10.1016/0022-460X(88)90397-5]CrossRefGoogle Scholar
  5. Craig, R.R.Jr., Kurdila, A.J., 2006. Fundamentals of Structural Dynamics. John Wiley & Sons Inc., New Jersey, p.513–527.Google Scholar
  6. de Rosa, M.A., Auciello, N.M., Lippiello, M., 2008. Dynamic stability analysis and DQM for beams with variable cross-section. Mechanics Research Communications, 35(3):187–192. [doi:10.1016/j.mechrescom.2007.10.010]MathSciNetCrossRefMATHGoogle Scholar
  7. Detinko, F.M., 2003. Lumped damping and stability of Beck column with a tip mass. International Journal of Solids and Structures, 40(17):4479–4486. [doi:10.1016/S0020-7683(03)00298-1]CrossRefMATHGoogle Scholar
  8. Di Egidio, A., Luongo, A., Paolone, A., 2007. Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams. International Journal of Non-Linear Mechanics, 42(1):88–98. [doi:10.1016/j.ijnonlinmec.2006.12.010]CrossRefMATHGoogle Scholar
  9. Djondjorov, P.A., Vassilev, V.M., 2008. On the dynamic stability of a cantilever under tangential follower force according to Timoshenko beam theory. Journal of Sound and Vibration, 311(3–5):1431–1437. [doi:10.1016/j.jsv.2007.10.005]CrossRefGoogle Scholar
  10. Elfelsoufi, Z., Azrar, L., 2006. Integral equation formulation and analysis of the dynamic stability of damped beams subjected to subtangential follower forces. Journal of Sound and Vibration, 296(4–5):690–713. [doi:10.1016/j.jsv.2006.01.019]CrossRefMATHGoogle Scholar
  11. Hassanpour, P.A., Cleghorn, W.L., Mills, J.K., Esmailzadeh, E., 2007. Exact solution of the oscillatory behavior under axial force of a beam with a concentrated mass within its interval. Journal of Vibration and Control, 13(12): 1723–1739. [doi:10.1177/1077546307076285]MathSciNetCrossRefMATHGoogle Scholar
  12. Hodges, D.H., Pierce, G.A., 2002. Introduction to Structural Dynamics and Aeroelasticity. The Press Syndicate of the University of Cambridge, Cambridge, p.59–66.Google Scholar
  13. Joshi, A., 1995. Free vibration characteristics of variable mass rocket having large axial thrust/acceleration. Journal of Sound and Vibration, 187(4):727–736. [doi:10.1006/jsvi.1995.0559]CrossRefGoogle Scholar
  14. Katsikadelis, J.T., Tsiatas, G.C., 2007. Optimum design of structures subjected to follower forces. International Journal of Mechanical Sciences, 49(11):1204–1212. [doi:10.1016/j.ijmecsci.2007.03.011]CrossRefGoogle Scholar
  15. Kim, J.H., Choo, Y.S., 1998. Dynamic stability of a free-free Timoshenko beam subjected to a pulsating follower force. Journal of Sound and Vibration, 216(4):623–636. [doi:10.1006/jsvi.1998.1717]CrossRefGoogle Scholar
  16. Langthjem, M.A., Sugiyama, Y., 1999. Optimum shape design against flutter of a cantilevered column with an end-mass of finite size subjected to a non-conservative load. Journal of Sound and Vibration, 226(1):1–23. [doi:10.1006/jsvi.1999.2211]CrossRefGoogle Scholar
  17. Lee, J.S., Kim, N.I., Kim, M.Y., 2007. Sub-tangentially loaded and damped Beck’s columns on two-parameter elastic foundation. Journal of Sound and Vibration, 306(3–5): 766–789. [doi:10.1016/j.jsv.2007.06.017]CrossRefGoogle Scholar
  18. Luongo, A., Di Egidio, A., 2006. Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam. Computers and Structures, 84(24–25):1596–1605. [doi:10.1016/j.compstruc.2006.01.004]CrossRefGoogle Scholar
  19. Marzani, A., Tornabene, F., Viola, E., 2008. Nonconservative stability problems via generalized differential quadrature method. Journal of Sound and Vibration, 315(1–2): 176–196. [doi:10.1016/j.jsv.2008.01.056]CrossRefGoogle Scholar
  20. Meirovitch, L., 1997. Principles and Techniques of Vibrations. Prentice-Hall International Inc., New Jersey, p.368–371.Google Scholar
  21. Mladenov, K.A., Sugiyama, Y., 1997. Stability of a jointed free-free beam under end rocket thrust. Journal of Sound and Vibration, 199(1):1–15. [doi:10.1006/jsvi.1996.0625]CrossRefGoogle Scholar
  22. Nihous, G.C., 1997. On the continuity of boundary value problem for vibrating free-free straight beams under axial loads. Journal of Sound and Vibration, 200(1):110–119. [doi:10.1006/jsvi.1996.0642]CrossRefMATHGoogle Scholar
  23. Paolone, A., Vastab, M., Luongoc, A., 2006. Flexural-torsional bifurcations of a cantilever beam under potential and circulatory forces I. Non-linear model and stability analysis. International Journal of Non-Linear Mechanics, 41(4):586–594. [doi:10.1016/j.ijnonlinmec.2006.02.006]CrossRefGoogle Scholar
  24. Park, Y.P., 1987. Dynamic stability of a free Timoshenko beam under a controlled follower force. Journal of Sound and Vibration, 113(3):407–415. [doi:10.1016/S0022-460X(87)80129-3]CrossRefGoogle Scholar
  25. Park, Y.P., Mote, C.D.Jr., 1985. The maximum controlled follower force on a free-free beam carrying a concentrated mass. Journal of Sound and Vibration, 98(2):247–256. [doi:10.1016/0022-460X(85)90388-8]CrossRefMATHGoogle Scholar
  26. Pourtakdoust, S.H., Assadian, N., 2004. Investigation of thrust effect on the vibrational characteristics of flexible guided missiles. Journal of Sound and Vibration, 272(1–2):287–299. [doi:10.1016/S0022-460X(03)00779-X]CrossRefGoogle Scholar
  27. Ryu, S.U., Sugiyama, Y., 2003. Computational dynamics approach to the effect of damping on stability of a cantilevered column subjected to a follower force. Computers and Structures, 81(4):265–271. [doi:10.1016/S0045-7949(02)00436-4]CrossRefGoogle Scholar
  28. Sato, K., 1991. On the governing equation for vibrating and stability of a Timoshenko beam: Hamilton’s Principle. Journal of Sound and Vibration, 145(2):338–340. [doi:10.1016/0022-460X(91)90597-D]CrossRefGoogle Scholar
  29. Shvartsman, B.S., 2007. Large deflections of a cantilever beam subjected to a follower force. Journal of Sound and Vibration, 304(3–5):969–973. [doi:10.1016/j.jsv.2007.03.010]CrossRefGoogle Scholar
  30. Sugiyama, Y., Langthjem, M.A., 2007. Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems. International Journal of Non-Linear Mechanics, 42(1):132–145. [doi:10.1016/j.ijnonlinmec.2006.11.011]CrossRefGoogle Scholar
  31. Thana, H.K., Ameen, M., 2007. Finite element analysis of dynamic stability of skeletal structures under periodic loading. Journal of Zhejiang University SCIENCE A, 8(2):245–256. [doi:10.1631/jzus.2007.A0245]CrossRefMATHGoogle Scholar
  32. Tomski, L., Szmidla, J., Uzny, S., 2007. The local and global instability and vibration of systems subjected to non-conservative loading. Thin-walled Structures, 45(10–11):945–949. [doi:10.1016/j.tws.2007.08.019]CrossRefGoogle Scholar
  33. Wang, Q., 2004. A comprehensive stability analysis of a cracked beam subjected to follower compression. International Journal of Solids and Structures, 41(18–19): 4875–4888. [doi:10.1016/j.ijsolstr.2004.04.037]CrossRefMATHGoogle Scholar
  34. Wu, J.J., 1975. On the stability of a free-free beam under axial thrust subjected to directional control. Journal of Sound and Vibration, 43(1):45–52. [doi:10.1016/0022-460X(75)90203-5]CrossRefGoogle Scholar
  35. Young, T.H., Juan, C.S., 2003. Dynamic stability and response of fluttered beams subjected to random follower forces. International Journal of Non-Linear Mechanics, 38(6):889–901. [doi:10.1016/S0020-7462(02)00035-5]CrossRefMATHGoogle Scholar

Copyright information

© Zhejiang University and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations