Skip to main content
Log in

An immune-tabu hybrid algorithm for thermal unit commitment of electric power systems

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by analyzing the generating units in modern power plants. A novel immune-tabu hybrid algorithm is proposed to solve this complex problem. In the algorithm, the objective function of the TUC problem is considered as an antigen and the solutions are considered as antibodies, which are determined by the affinity computation. The code length of an antibody is shortened by encoding the continuous operating time, and the optimum searching speed is improved. Each feasible individual in the immune algorithm (IA) is used as the initial solution of the tabu search (TS) algorithm after certain generations of IA iteration. As examples, the proposed method has been applied to several thermal unit systems for a period of 24 h. The computation results demonstrate the good global optimum searching performance of the proposed immune-tabu hybrid algorithm. The presented algorithm can also be used to solve other optimization problems in fields such as the chemical industry and the power industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arroyo, J.M., Conejo, A.J., 2002. A parallel repair genetic algorithm to solve the unit commitment problem. IEEE Trans. Power Syst., 17(4):1216–1224. [doi:10.1109/TPWRS.2002.804953]

    Article  Google Scholar 

  • Bard, J.F., 1988. Short-term scheduling of the thermal-electric generators using Lagrangian relation. Oper. Res., 36(5):756–766. [doi:10.1287/opre.36.5.756]

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, C.H., Cai, Y.Y., 1997. Optimization of unit commitment by genetic algorithm. Power Syst. Technol., 21(1):44–47, 51.

    Google Scholar 

  • Chen, S.L., Zhan, T.S., Tsay, M.T., 2006. Generation expansion planning of the utility with refined immune algorithm. Electr. Power Syst. Res., 76(4):251–258. [doi:10.1016/j.epsr.2005.06.005]

    Article  Google Scholar 

  • Cheng, C.P., Liu, C.W., Liu, C.C., 2000. Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Trans. Power Syst., 15(2):707–714. [doi:10.1109/59.867163]

    Article  Google Scholar 

  • Dieu, V.N., Ongsakul, W., 2007. Improved merit order and enhanced augmented Lagrange Hopfield network for unit commitment. IET Gener. Trans. Distrib., 1(4):548–556. [doi:10.1049/iet-gtd:20060321]

    Article  Google Scholar 

  • Dillon, T.S., 1978. Integer programming approach to the problem of unit commitment with probabilistic reserver determination. IEEE Tran. Power Appar. Syst., 97(6):2154–2166. [doi:10.1109/TPAS.1978.354719]

    Article  Google Scholar 

  • El-Amin, I., Duffuaa, S., Abbas, M., 2000. A tabu search algorithm for maintenance scheduling of generating units. Electr. Power Syst. Res., 54(2):91–99. [doi:10.1016/S0378-7796(99)00079-6]

    Article  Google Scholar 

  • Fan, H., Wei, H., 2004. Improved genetic algorithm and its application in unit commitment optimization. Proc. EPSA, 16(4):46–49, 63.

    Google Scholar 

  • Fan, W., Guan, X.H., Zhai, Q.Z., 2002. A new method for unit commitment with ramping constraints. Electr. Power Syst. Res., 62(3):215–224. [doi:10.1016/S0378-7796(02)00043-3]

    Article  Google Scholar 

  • Gao, J., 2001. The application of the immune algorithm for power network planning. Syst. Eng.-Theory & Pract., 5:119–123.

    Google Scholar 

  • Han, X.S., Liu, Z., 1994. Optimal unit commitment considering unit’s ramp-rate limits. J. Power Syst. Technol., 16:11–16.

    Google Scholar 

  • Huang, S.J., 1999. Enhancement of thermal unit commitment using immune algorithms based optimization approaches. Int. J. Electr. Power Energy Syst., 21(4):245–252. [doi:10.1016/S0142-0615(98)00050-7]

    Article  Google Scholar 

  • Juste, K.A., Kita, H., Tanaka, E., Hasegawa, J., 1999. An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst., 14(4):1452–1459. [doi:10.1109/59.801925]

    Article  Google Scholar 

  • Kazarlis, S.A., Bakirtzis, A.G., Petridis, V., 1996. A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst., 11(1):83–92. [doi:10.1109/59.485989]

    Article  Google Scholar 

  • Kothari, D.P., Ahmad, A., 1995. An expert system approach to the unit commitment problem. Energy Conv. Manag., 36(4):257–261. [doi:10.1016/0196-8904(94)00075-B]

    Article  Google Scholar 

  • Li, W., Sheng, D.R., Chen, J.H., Yuan, Z.F., Cen, K.F., 2006. A New Method Based on Immune Algorithm to Solve the Unit Commitment Problem. In: Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management. Springer, Boston, 207:840–846. [doi:10.1007/0-387-34403-9_117]

    Google Scholar 

  • Liao, G.C., 2006. Short-term thermal generation scheduling using improved immune algorithm. Electr. Power Syst. Res., 76(5):360–373. [doi:10.1016/j.epsr.2005.06.009]

    Article  Google Scholar 

  • Mantawy, A.H., 2004. A genetic algorithm solution to a new fuzzy unit commitment mode. Electr. Power Syst. Res., 72(2):171–178. [doi:10.1016/j.epsr.2004.04.003]

    Article  Google Scholar 

  • Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z., 1998. Unit commitment by tabu search. IEE Proc.-Gener. Transm. Distrib., 145(1):55–64. [doi:10.1049/ip-gtd:19981681]

    Article  Google Scholar 

  • Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z., 1999. A new genetic-based tabu search algorithm for unit commitment problem. Electr. Power Syst. Res., 49(2):71–78. [doi:10.1016/S0378-7796(98)00045-5]

    Article  Google Scholar 

  • Ongsakul, W., Petcharaks, N., 2004. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans. Power Syst., 19(1):620–628. [doi:10.1109/TPWRS.2003.820707]

    Article  Google Scholar 

  • Ouyang, Z., Shahidehpour, S.M., 1992. A hybrid artificial neural network-dynamic programming approach to unit commitment. IEEE Trans. Power Syst., 7(1):236–242. [doi:10.1109/59.141709]

    Article  Google Scholar 

  • Pang, C.K., Sheblé, G.B., Albuyeh, F., 1981. Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments. IEEE Trans. Power Appar. Syst., 100(3):1212–1218. [doi:10.1109/TPAS.1981.316592]

    Article  Google Scholar 

  • Pei, J.Y., Lai, Y.F., Chen, P., Ji, C.M., 2001. Modified genetic algorithm for optimizing combination of units. Eng. J. Wuhan Univ., 34:72–76 (in Chinese).

    Google Scholar 

  • Saber, A.Y., Senjyu, T., Miyagi, T., Urasaki, N., Funabashi, T., 2007. Two-fold simulated annealing approach to unit commitment scheduling. Electr. Power Compon. Syst., 35(3):337–357. [doi:10.1080/15325000600978783]

    Article  Google Scholar 

  • Senjyu, T., Yamashiro, H., Uezato, K., Funabashi, T., 2002. A Unit Commitment Problem by Using Genetic Algorithm Based on Characteristic Classification. IEEE Power Engineering Society Winter Meeting, 1:58–63. [doi:10.1109/PESW.2002.984954]

    Article  Google Scholar 

  • Shi, Q., Li, C.H., Wang, J.W., 2002. The application of genetic algorithm to short-term generation scheduling. Proc. EPSA, 14:56–59.

    Google Scholar 

  • Sun, Y.Z., Wei, W., 2002. Solution of optimal power flow problem based on artificial immune algorithm. Autom. Electr. Power Syst., 26:30–34.

    Google Scholar 

  • Swarup, K.S., Yamashiro, S., 2003. A genetic algorithm approach to generator unit commitment. Int. J. Electr. Power Energy Syst., 25(9):679–687. [doi:10.1016/S0142-0615(03)00003-6]

    Article  Google Scholar 

  • Victoire, T.A., Jeyakumar, A.E., 2006. A tabu search based hybrid optimization approach for a fuzzy modelled unit commitment problem. Electr. Power Syst. Res., 76(6–7):413–425. [doi:10.1016/j.epsr.2005.08.004]

    Article  Google Scholar 

  • Yang, P.C., Yang, H.T., Huang, C.L., 1996. Solving the unit commitment problem with a genetic algorithm through a constraint satisfaction technique. Electr. Power Syst. Res., 37(1):55–65. [doi:10.1016/0378-7796(96)01036-X]

    Article  Google Scholar 

  • Zhuang, F., Galiana, F.D., 1990. Unit commitment by simulated annealing. IEEE Trans. Power Syst., 5(1):311–318. [doi:10.1109/59.49122]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-yu Peng.

Additional information

Project partially supported by the Lamar Research Enhancement Grant and the National Science Foundation Grant (No. DUE-0737173) to Dr. W. Zhu at Lamar University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Peng, Hy., Zhu, Wh. et al. An immune-tabu hybrid algorithm for thermal unit commitment of electric power systems. J. Zhejiang Univ. Sci. A 10, 877–889 (2009). https://doi.org/10.1631/jzus.A0820607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820607

Key words

CLC number

Navigation