Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 6, pp 877–889 | Cite as

An immune-tabu hybrid algorithm for thermal unit commitment of electric power systems

  • Wei Li
  • Hao-yu Peng
  • Wei-hang Zhu
  • De-ren Sheng
  • Jian-hong Chen
Article

Abstract

This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by analyzing the generating units in modern power plants. A novel immune-tabu hybrid algorithm is proposed to solve this complex problem. In the algorithm, the objective function of the TUC problem is considered as an antigen and the solutions are considered as antibodies, which are determined by the affinity computation. The code length of an antibody is shortened by encoding the continuous operating time, and the optimum searching speed is improved. Each feasible individual in the immune algorithm (IA) is used as the initial solution of the tabu search (TS) algorithm after certain generations of IA iteration. As examples, the proposed method has been applied to several thermal unit systems for a period of 24 h. The computation results demonstrate the good global optimum searching performance of the proposed immune-tabu hybrid algorithm. The presented algorithm can also be used to solve other optimization problems in fields such as the chemical industry and the power industry.

Key words

Immune algorithm (IA) Tabu search (TS) Optimization method Unit commitment 

CLC number

TM744 TP18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arroyo, J.M., Conejo, A.J., 2002. A parallel repair genetic algorithm to solve the unit commitment problem. IEEE Trans. Power Syst., 17(4):1216–1224. [doi:10.1109/TPWRS.2002.804953]CrossRefGoogle Scholar
  2. Bard, J.F., 1988. Short-term scheduling of the thermal-electric generators using Lagrangian relation. Oper. Res., 36(5):756–766. [doi:10.1287/opre.36.5.756]MathSciNetCrossRefMATHGoogle Scholar
  3. Cai, C.H., Cai, Y.Y., 1997. Optimization of unit commitment by genetic algorithm. Power Syst. Technol., 21(1):44–47, 51.Google Scholar
  4. Chen, S.L., Zhan, T.S., Tsay, M.T., 2006. Generation expansion planning of the utility with refined immune algorithm. Electr. Power Syst. Res., 76(4):251–258. [doi:10.1016/j.epsr.2005.06.005]CrossRefGoogle Scholar
  5. Cheng, C.P., Liu, C.W., Liu, C.C., 2000. Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Trans. Power Syst., 15(2):707–714. [doi:10.1109/59.867163]CrossRefGoogle Scholar
  6. Dieu, V.N., Ongsakul, W., 2007. Improved merit order and enhanced augmented Lagrange Hopfield network for unit commitment. IET Gener. Trans. Distrib., 1(4):548–556. [doi:10.1049/iet-gtd:20060321]CrossRefGoogle Scholar
  7. Dillon, T.S., 1978. Integer programming approach to the problem of unit commitment with probabilistic reserver determination. IEEE Tran. Power Appar. Syst., 97(6):2154–2166. [doi:10.1109/TPAS.1978.354719]CrossRefGoogle Scholar
  8. El-Amin, I., Duffuaa, S., Abbas, M., 2000. A tabu search algorithm for maintenance scheduling of generating units. Electr. Power Syst. Res., 54(2):91–99. [doi:10.1016/S0378-7796(99)00079-6]CrossRefGoogle Scholar
  9. Fan, H., Wei, H., 2004. Improved genetic algorithm and its application in unit commitment optimization. Proc. EPSA, 16(4):46–49, 63.Google Scholar
  10. Fan, W., Guan, X.H., Zhai, Q.Z., 2002. A new method for unit commitment with ramping constraints. Electr. Power Syst. Res., 62(3):215–224. [doi:10.1016/S0378-7796(02)00043-3]CrossRefGoogle Scholar
  11. Gao, J., 2001. The application of the immune algorithm for power network planning. Syst. Eng.-Theory & Pract., 5:119–123.Google Scholar
  12. Han, X.S., Liu, Z., 1994. Optimal unit commitment considering unit’s ramp-rate limits. J. Power Syst. Technol., 16:11–16.Google Scholar
  13. Huang, S.J., 1999. Enhancement of thermal unit commitment using immune algorithms based optimization approaches. Int. J. Electr. Power Energy Syst., 21(4):245–252. [doi:10.1016/S0142-0615(98)00050-7]CrossRefGoogle Scholar
  14. Juste, K.A., Kita, H., Tanaka, E., Hasegawa, J., 1999. An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst., 14(4):1452–1459. [doi:10.1109/59.801925]CrossRefGoogle Scholar
  15. Kazarlis, S.A., Bakirtzis, A.G., Petridis, V., 1996. A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst., 11(1):83–92. [doi:10.1109/59.485989]CrossRefGoogle Scholar
  16. Kothari, D.P., Ahmad, A., 1995. An expert system approach to the unit commitment problem. Energy Conv. Manag., 36(4):257–261. [doi:10.1016/0196-8904(94)00075-B]CrossRefGoogle Scholar
  17. Li, W., Sheng, D.R., Chen, J.H., Yuan, Z.F., Cen, K.F., 2006. A New Method Based on Immune Algorithm to Solve the Unit Commitment Problem. In: Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management. Springer, Boston, 207:840–846. [doi:10.1007/0-387-34403-9_117]Google Scholar
  18. Liao, G.C., 2006. Short-term thermal generation scheduling using improved immune algorithm. Electr. Power Syst. Res., 76(5):360–373. [doi:10.1016/j.epsr.2005.06.009]CrossRefGoogle Scholar
  19. Mantawy, A.H., 2004. A genetic algorithm solution to a new fuzzy unit commitment mode. Electr. Power Syst. Res., 72(2):171–178. [doi:10.1016/j.epsr.2004.04.003]CrossRefGoogle Scholar
  20. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z., 1998. Unit commitment by tabu search. IEE Proc.-Gener. Transm. Distrib., 145(1):55–64. [doi:10.1049/ip-gtd:19981681]CrossRefGoogle Scholar
  21. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z., 1999. A new genetic-based tabu search algorithm for unit commitment problem. Electr. Power Syst. Res., 49(2):71–78. [doi:10.1016/S0378-7796(98)00045-5]CrossRefGoogle Scholar
  22. Ongsakul, W., Petcharaks, N., 2004. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans. Power Syst., 19(1):620–628. [doi:10.1109/TPWRS.2003.820707]CrossRefGoogle Scholar
  23. Ouyang, Z., Shahidehpour, S.M., 1992. A hybrid artificial neural network-dynamic programming approach to unit commitment. IEEE Trans. Power Syst., 7(1):236–242. [doi:10.1109/59.141709]CrossRefGoogle Scholar
  24. Pang, C.K., Sheblé, G.B., Albuyeh, F., 1981. Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments. IEEE Trans. Power Appar. Syst., 100(3):1212–1218. [doi:10.1109/TPAS.1981.316592]CrossRefGoogle Scholar
  25. Pei, J.Y., Lai, Y.F., Chen, P., Ji, C.M., 2001. Modified genetic algorithm for optimizing combination of units. Eng. J. Wuhan Univ., 34:72–76 (in Chinese).Google Scholar
  26. Saber, A.Y., Senjyu, T., Miyagi, T., Urasaki, N., Funabashi, T., 2007. Two-fold simulated annealing approach to unit commitment scheduling. Electr. Power Compon. Syst., 35(3):337–357. [doi:10.1080/15325000600978783]CrossRefGoogle Scholar
  27. Senjyu, T., Yamashiro, H., Uezato, K., Funabashi, T., 2002. A Unit Commitment Problem by Using Genetic Algorithm Based on Characteristic Classification. IEEE Power Engineering Society Winter Meeting, 1:58–63. [doi:10.1109/PESW.2002.984954]CrossRefGoogle Scholar
  28. Shi, Q., Li, C.H., Wang, J.W., 2002. The application of genetic algorithm to short-term generation scheduling. Proc. EPSA, 14:56–59.Google Scholar
  29. Sun, Y.Z., Wei, W., 2002. Solution of optimal power flow problem based on artificial immune algorithm. Autom. Electr. Power Syst., 26:30–34.Google Scholar
  30. Swarup, K.S., Yamashiro, S., 2003. A genetic algorithm approach to generator unit commitment. Int. J. Electr. Power Energy Syst., 25(9):679–687. [doi:10.1016/S0142-0615(03)00003-6]CrossRefGoogle Scholar
  31. Victoire, T.A., Jeyakumar, A.E., 2006. A tabu search based hybrid optimization approach for a fuzzy modelled unit commitment problem. Electr. Power Syst. Res., 76(6–7):413–425. [doi:10.1016/j.epsr.2005.08.004]CrossRefGoogle Scholar
  32. Yang, P.C., Yang, H.T., Huang, C.L., 1996. Solving the unit commitment problem with a genetic algorithm through a constraint satisfaction technique. Electr. Power Syst. Res., 37(1):55–65. [doi:10.1016/0378-7796(96)01036-X]CrossRefGoogle Scholar
  33. Zhuang, F., Galiana, F.D., 1990. Unit commitment by simulated annealing. IEEE Trans. Power Syst., 5(1):311–318. [doi:10.1109/59.49122]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Wei Li
    • 1
  • Hao-yu Peng
    • 1
  • Wei-hang Zhu
    • 2
  • De-ren Sheng
    • 1
  • Jian-hong Chen
    • 1
  1. 1.School of Mechanical and Energy EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Industrial EngineeringLamar UniversityBeaumontUSA

Personalised recommendations