Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 3, pp 319–326 | Cite as

Magnetoelectroelastic fields in rotating multiferroic composite cylindrical structures

Article

Abstract

An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the composite cylinder can be arbitrary. General mechanical, electric and magnetic boundary conditions can be applied at both the inner and outer cylindrical surfaces. The state space method is employed so that only a 2×2 matrix is involved in the whole solving procedure. In the numerical experiments, the distributions of elastic, electric as well as magnetic fields in an internally pressurized rotating BaTiO3/CoFe2O4 composite hollow cylinder subjected to different boundary conditions are presented graphically. The results clearly show that the stress fields in a multiferroic composite cylinder are controllable.

Key words

Analytical solution Multiferroic composite Rotating hollow cylinder State space method 

CLC number

O343.1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babaei, M.H., Chen, Z.T., 2008. Exact solutions for radially polarized and magnetized magnetoelectroelastic rotating cylinders. Smart Materials and Structures, 17(2):025035. [doi:10.1088/0964-1726/17/2/025035]Google Scholar
  2. Buchanan, G.R., 2003. Free vibration of an infinite magneto-electro-elastic cylinder. Journal of Sound and Vibration, 268(2):413–426. [doi:10.1016/s0022-460X(03)00357-2]MathSciNetCrossRefGoogle Scholar
  3. Callioglu, H., 2004. Stress analysis of an orthotropic rotating disc under thermal loading. Journal of Reinforced Plastics and Composites, 23(17):1859–1867. [doi:10.1177/0731684404041142]CrossRefGoogle Scholar
  4. Chang, C.I., 1974. A closed-form solution for an orthotropic rotating disk. ASME Journal of Applied Mechanics, 41(4):1122–1123.CrossRefGoogle Scholar
  5. Chen, W.Q., Lee, K.Y., Ding, H.J., 2005. On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. Journal of Sound and Vibration, 279(1–2):237–251. [doi:10.1016/j.jsv.2003.10.033]CrossRefGoogle Scholar
  6. Durodola, J.F., 2000. Deformation and stresses in functionally graded rotating disks. Composites Science and Technology, 60(7):987–995.CrossRefGoogle Scholar
  7. El-Naggar, A.M., Abd-Alla, A.M., Fahmy, M.A., Ahmed, S.M., 2002. Thermal stress in a rotating non-homogeneous orthotropic hollow cylinder. Heat and Mass Transfer, 39(1):41–46. [doi:10.1007/s00231-001-0285-4]CrossRefGoogle Scholar
  8. Eraslan, A.N., Akis, T., 2006. On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems. Acta Mechanica, 181(1–2):43–63. [doi:10.1007/s00707-005-0276-5]CrossRefMATHGoogle Scholar
  9. Galic, D., Horgan, C.O., 2003. The stress response of radially polarized rotating piezoelectric cylinders. ASME Journal of Applied Mechanics, 70(3):426–435. [doi:10.1115/1.1572900]CrossRefMATHGoogle Scholar
  10. Genta, G., Gola, M., 1981. The stress distribution in orthotropic rotating disks. ASME Journal of Applied Mechanics, 48(3):559–562.CrossRefMATHGoogle Scholar
  11. Pan, E., 2001. Exact solution for simply supported and multilayered magneto-electro-elastic plate. ASME Journal of Applied Mechanics, 68(4):608–618. [doi:10.1115/1.1380385]CrossRefMATHGoogle Scholar
  12. Pan, E., Heyliger, P.R., 2003. Exact solutions for magneto-electro-elastic laminates in cylindrical bending. International Journal of Solids and Structures, 40(24):6859–6876. [doi:10.1016/j.ijsolstr.2003.08.003]CrossRefMATHGoogle Scholar
  13. Ramirez, F., Heyliger, P.R., Pan, E., 2006. Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Journal of Sound and Vibration, 292(3–5):626–644. [doi:10.1016/j.jsv.2005.08.004]CrossRefGoogle Scholar
  14. Spaldin, N.A., Fiebig, M., 2005. The renaissance of magneto-electric multiferroics. Science, 309(5733):391–392. [doi:10.1126/science.1113357]CrossRefGoogle Scholar
  15. Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity. McGraw-Hill, New York.MATHGoogle Scholar
  16. Wang, H.M., Ding, H.J., 2007. Control of stress response in a rotating infinite hollow multilayered piezoelectric cylinder. Archive of Applied Mechanics, 77(1):11–20. [doi:10. 1088/0964-1726/17/2/025035]CrossRefMATHGoogle Scholar
  17. Wang, X., Zhong, Z., 2003. A finitely long circular cylindrical shell of piezoelectric/piezomagnetic composite under pressure and temperature change. International Journal of Engineering Science, 41(20):2429–2445. [doi:10.1016/S0020-7225(03)00215-5]CrossRefMATHGoogle Scholar
  18. You, L.H., You, X.Y., Zhang, J.J., Li, J., 2007. On rotating circular disks with varying material properties. Zeitschrift für angewandte Mathematik und Physik, 58(6): 1068–1084. [doi:10.1007/s00033-007-5094-2]MathSciNetCrossRefMATHGoogle Scholar
  19. Zenkour, A.M., 2007. Elastic deformation of the rotating functionally graded annular disc with rigid casing. Journal of Materials Science, 42(23):9717–9724. [doi:10.1007/s10853-007-1946-6]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of MechanicsZhejiang UniversityHangzhouChina

Personalised recommendations