Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 9, Issue 11, pp 1601–1613 | Cite as

CFD simulation with enhancement factor of sulfur dioxide absorption in the spray scrubber

Article

Abstract

A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented. Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are analyzed in the model. A continuous concentration change of H+ was solved by iterative coupling using Matlab, and it was found that there was a remarkable influence on the concentration of the other elements in the process of SO2 absorption. The calculations show that the enhancement factor exponentially grows with an increasing value of pH and logarithmically decays with an increasing value of the driving force. To verify the accuracy of the model, experiments were also carried out, and the results suggest that the model, after combining the physical performance of the spray and the enhancement factor, can more precisely describe SO2 absorption in a spray scrubber. Furthermore, a commercial computational fluid dynamics (CFD) tool is used to perform several simulations which describe and clarify the effects of variables on SO2 absorption. The results of numerical simulation can provide a basis for further design and optimization of the scrubber.

Key words

SO2 absorption Limestone dissolution Enhancement factor Mass transfer Concentration profile 

CLC number

X5 X7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar, M.K., Yan, J., Ghiaasiaan, S.M., 2003. Mechanism of gas absorption enhancement in a slurry droplet containing reactive, sparingly soluble micro particles. International Journal of Heat and Mass Transfer, 46(24):4561–4571. [doi:10.1016/S0017-9310(03)00296-5]CrossRefMATHGoogle Scholar
  2. Alexandrova, S., Marion, M., Lepinasse, E., Saboni, A., 2004. Mass transfer modeling of SO2 into large drops. Chemical Engineering & Technology, 27(6):676–680. [doi:10.1002/ceat.200401655]CrossRefGoogle Scholar
  3. Altwicker, E.R., Lindhjem, C.E., 1988. Absorption of gases into drops. AIChE Journal, 34(2):329–332. [doi:10.1002/aic.690340218]CrossRefGoogle Scholar
  4. Amokrane, H., Caussade, B., 1999. Gas absorption into a moving spherical water drop. Journal of the Atmospheric Sciences, 56(12):1808–1829. [doi:10.1175/1520-0469(1999)056<1808:GAIAMS>2.0.CO;2]CrossRefGoogle Scholar
  5. Bausach, M., Pera, T.M., Fite, C., 2006. Water-induced rearrangement of Ca(OH)2 reacted with SO2. AIChE Journal, 52(8):2876–2886. [doi:10.1002/aic.10907]CrossRefGoogle Scholar
  6. Bird, R.B., Stewart, W.E., Lightfoot, E.N., 2002 Transport Phenomena (2nd Edition). Wiley, New York.Google Scholar
  7. Brogren, C., Karlsson, H.T., 1997. Modeling the absorption of SO2 in a spray scrubber using the penetration theory. Chemical Engineering Science, 52(18):3085–3099. [doi:10.1016/S0009-2509(97)00126-7]CrossRefGoogle Scholar
  8. Ebrahimi, S., Kleerebezem, R., Loosdrecht, M.C., Heijnen, J.J., 2003. Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutions. Chemical Engineering Science, 58(2):417–427. [doi:10.1016/S0009-2509(02)00522-5]CrossRefGoogle Scholar
  9. Epstein, M., 1977. EPA Alkali Scrubbing Test Facility: Summary of Testing Through October 1974. U.S. EPA 600/7-7-105.Google Scholar
  10. Gerbec, M., Stergarsek A., Kocjancic R., 1995. Simulation model of wet flue gas desulphurization plant. Computers and Chemical Engineering, 19(1):283–286. [doi:10.1016/0098-1354(95)87050-4]CrossRefGoogle Scholar
  11. Gomez, A., Fueyo, N., Tomas, A., 2007. Detailed modeling of a flue-gas desulfurisation plant. Computers and Chemical Engineering, 31(11):1419–1431. [doi:10.1016/j.compchemeng.2006.12.004]CrossRefGoogle Scholar
  12. Haider, A., Levenspiel, O., 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58(1):63–70. [doi:10.1016/0032-5910(89)80008-7]CrossRefGoogle Scholar
  13. Han, K.S., Chung, M.K., Sung, H.J., 1991. Application of Lumley’s drag reduction model to two-phase gasparticles flow in pipe. Journal of Fluids Engineering, 113(1):130–136. [doi:10.1115/1.2926485]CrossRefGoogle Scholar
  14. Hikita, H., Asia, S., Takatsuka, T., 1972. Gas absorption with a two step instantaneous chemical reaction. The Chemical Engineering Journal, 4(1):31–40. [doi:10.1016/0300-9467(72)80050-9]CrossRefGoogle Scholar
  15. Kadja, M., Bergeles, G., 2003. Modeling of slurry droplet drying. Applied Thermal Engineering, 23(7):829–844. [doi:10.1016/S1359-4311(03)00014-0]CrossRefGoogle Scholar
  16. Kota, K., Langrish, T.A.G., 2007. Prediction of wall deposition behavior in a pilot-scale spray dryer using deposition correlations for pipe flows. Journal of Zhejiang University-SCIENCE A, 8(2):301–312. [doi:10.1631/jzus.2007.A0301]CrossRefGoogle Scholar
  17. Lancia, A., Musmarra, D., Pepe, F., Volpicelli, G., 1994. SO2 absorption in a bubbling reactor using limestone suspensions. Chemical Engineering Science, 49(24):4523–4532. [doi:10.1016/S0009-2509(05)80242-8]CrossRefGoogle Scholar
  18. Lancia, A., Musmarra, D., Pepe, F., 1996. Uncatalyzed heterogeneous oxidation of calcium bisulfite. Chemical Engineering Science, 51(16):3889–3896. [doi:10.1016/0009-2509(96)00222-9]CrossRefGoogle Scholar
  19. Lancia, A., Musmarra, D., Pepe, F., 1997. Modeling of SO2 absorption into limestone suspensions. Industrial & Engineering Chemistry Research, 36(1):197–203. [doi:10.1021/ie9602365]CrossRefGoogle Scholar
  20. Lopez de Bertodano, M., Lee, S.J., Lahey, R.T., Drew, D.A., 1990. The prediction of 2-phase turbulence and phase distribution phenomena using a Reynolds stress model. Journal of Fluids Engineering, 112(1):107–114. [doi:10.1115/1.2909357]CrossRefGoogle Scholar
  21. Muginstein, A., Fichman, M., Gutfinger, C., 2001. Gas absorption in a moving drop containing suspended solids. International Journal of Multiphase Flow, 27(6):1079–1094. [doi:10.1016/S0301-9322(00)00063-X]CrossRefMATHGoogle Scholar
  22. Nagel, D., Richard, K.D., Lintnz, H.G., Roizard, C., Lapicque, F., 2002. Absorption of sulfur dioxide in N-formylmorpholine: investigations of the kinetics of the liquid phase reaction. Chemical Engineering Science, 57(22):4883–4893. [doi:10.1016/S0009-2509(02)00283-X]CrossRefGoogle Scholar
  23. Olausson, S., Wallin, M., Bjerle, I., 1993. A model for absorption of sulphur dioxide into a limestone slurry. The Chemical Engineering Journal, 51(2):99–108. [doi:10.1016/0300-9467(93)80016-H]CrossRefGoogle Scholar
  24. Pinsent, B.R.W., Pearson, L., Roughton, F.J.W., 1956. The kinetics of the combination of carbondioxide with hydroxide ions. Transactions of the Faraday Society, 52(1): 1512–1522. [doi:10.1039/TF9565201512]CrossRefGoogle Scholar
  25. Retieb, S., Guiraud, P., Angelov, G., Gourdon, C., 2007. Hold-up within two-phase countercurrent pulsed columns via Eulerian simulations. Chemical Engineering Science, 62(17):4558–4572. [doi:10.1016/j.ces. 2007.04. 043]CrossRefGoogle Scholar
  26. Romain, L., Arsam, B., Laurent, S., Yannick, J.H., Rachid, O., Badie, I.M., 2008. An algorithm for predicting the hydrodynamic and mass transfer parameters in bubble column and slurry bubble column reactors. Fuel Processing Technology, 89(1):322–343. [doi:10.1016/j.fuproc.2007.11.016]Google Scholar
  27. Saboni, A., Alexandrova, S., 2001. Sulfur dioxide absorption and desorption by water drops. Chemical Engineering Journal, 84(3):577–580. [doi:10.1016/S1385-8947(01)00172-3]CrossRefGoogle Scholar
  28. Scala, F., D’Ascenzo, M., Lancia, A., 2004. Modeling flue gas desulfurization by spray-dry absorption. Separation and Purification Technology, 34(1–3):143–153. [doi:10.1016/S1383-5866(03)00188-6]CrossRefGoogle Scholar
  29. Sheng, Y.L., Wen, D.X., 2006. Modeling and simulation of a bubbling SO2 absorber with granular limestone slurry and an organic acid additive. Chemical Engineering & Technology, 29(10):1167–1173. [doi:10.1002/ceat.200600101]CrossRefGoogle Scholar
  30. Stromberg, A.M., 1992. Prospects for Further Development of Spray-scrubbing. PhD Thesis, University of Lund.Google Scholar
  31. Vandu, C.O., Berg, B.V.D., Krishna, R., 2005. Gas-liquid mass transfer in a slurry bubble column at high slurry concentrations and high gas velocities. Chemical Engineering & Technology, 28(9):998–1002. [doi:10.1002/ceat.200500151]CrossRefGoogle Scholar
  32. Yeh, N.K., Rochelle, G.T., 2003. Liquid-phase mass transfer in spray contactors. AIChE Journal, 49(9):2363–2373. [doi:10.1002/aic.690490912]CrossRefGoogle Scholar
  33. Zhang, Q.Y., Wei, Y.M., Chen, Y.X., Guo, H., 2007. Environmental damage costs from fossil electricity generation in China, 2000–2003. Journal of Zhejiang University-SCIENCE A, 8(11):1816–1825. [doi:10.1631/jzus.2007.A1816]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Xiang Gao
    • 1
  • Wang Huo
    • 1
  • Zhong-yang Luo
    • 1
  • Ke-fa Cen
    • 1
  1. 1.State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations