Skip to main content
Log in

CFD simulation with enhancement factor of sulfur dioxide absorption in the spray scrubber

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented. Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are analyzed in the model. A continuous concentration change of H+ was solved by iterative coupling using Matlab, and it was found that there was a remarkable influence on the concentration of the other elements in the process of SO2 absorption. The calculations show that the enhancement factor exponentially grows with an increasing value of pH and logarithmically decays with an increasing value of the driving force. To verify the accuracy of the model, experiments were also carried out, and the results suggest that the model, after combining the physical performance of the spray and the enhancement factor, can more precisely describe SO2 absorption in a spray scrubber. Furthermore, a commercial computational fluid dynamics (CFD) tool is used to perform several simulations which describe and clarify the effects of variables on SO2 absorption. The results of numerical simulation can provide a basis for further design and optimization of the scrubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbar, M.K., Yan, J., Ghiaasiaan, S.M., 2003. Mechanism of gas absorption enhancement in a slurry droplet containing reactive, sparingly soluble micro particles. International Journal of Heat and Mass Transfer, 46(24):4561–4571. [doi:10.1016/S0017-9310(03)00296-5]

    Article  MATH  Google Scholar 

  • Alexandrova, S., Marion, M., Lepinasse, E., Saboni, A., 2004. Mass transfer modeling of SO2 into large drops. Chemical Engineering & Technology, 27(6):676–680. [doi:10.1002/ceat.200401655]

    Article  Google Scholar 

  • Altwicker, E.R., Lindhjem, C.E., 1988. Absorption of gases into drops. AIChE Journal, 34(2):329–332. [doi:10.1002/aic.690340218]

    Article  Google Scholar 

  • Amokrane, H., Caussade, B., 1999. Gas absorption into a moving spherical water drop. Journal of the Atmospheric Sciences, 56(12):1808–1829. [doi:10.1175/1520-0469(1999)056<1808:GAIAMS>2.0.CO;2]

    Article  Google Scholar 

  • Bausach, M., Pera, T.M., Fite, C., 2006. Water-induced rearrangement of Ca(OH)2 reacted with SO2. AIChE Journal, 52(8):2876–2886. [doi:10.1002/aic.10907]

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N., 2002 Transport Phenomena (2nd Edition). Wiley, New York.

    Google Scholar 

  • Brogren, C., Karlsson, H.T., 1997. Modeling the absorption of SO2 in a spray scrubber using the penetration theory. Chemical Engineering Science, 52(18):3085–3099. [doi:10.1016/S0009-2509(97)00126-7]

    Article  Google Scholar 

  • Ebrahimi, S., Kleerebezem, R., Loosdrecht, M.C., Heijnen, J.J., 2003. Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutions. Chemical Engineering Science, 58(2):417–427. [doi:10.1016/S0009-2509(02)00522-5]

    Article  Google Scholar 

  • Epstein, M., 1977. EPA Alkali Scrubbing Test Facility: Summary of Testing Through October 1974. U.S. EPA 600/7-7-105.

  • Gerbec, M., Stergarsek A., Kocjancic R., 1995. Simulation model of wet flue gas desulphurization plant. Computers and Chemical Engineering, 19(1):283–286. [doi:10.1016/0098-1354(95)87050-4]

    Article  Google Scholar 

  • Gomez, A., Fueyo, N., Tomas, A., 2007. Detailed modeling of a flue-gas desulfurisation plant. Computers and Chemical Engineering, 31(11):1419–1431. [doi:10.1016/j.compchemeng.2006.12.004]

    Article  Google Scholar 

  • Haider, A., Levenspiel, O., 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58(1):63–70. [doi:10.1016/0032-5910(89)80008-7]

    Article  Google Scholar 

  • Han, K.S., Chung, M.K., Sung, H.J., 1991. Application of Lumley’s drag reduction model to two-phase gasparticles flow in pipe. Journal of Fluids Engineering, 113(1):130–136. [doi:10.1115/1.2926485]

    Article  Google Scholar 

  • Hikita, H., Asia, S., Takatsuka, T., 1972. Gas absorption with a two step instantaneous chemical reaction. The Chemical Engineering Journal, 4(1):31–40. [doi:10.1016/0300-9467(72)80050-9]

    Article  Google Scholar 

  • Kadja, M., Bergeles, G., 2003. Modeling of slurry droplet drying. Applied Thermal Engineering, 23(7):829–844. [doi:10.1016/S1359-4311(03)00014-0]

    Article  Google Scholar 

  • Kota, K., Langrish, T.A.G., 2007. Prediction of wall deposition behavior in a pilot-scale spray dryer using deposition correlations for pipe flows. Journal of Zhejiang University-SCIENCE A, 8(2):301–312. [doi:10.1631/jzus.2007.A0301]

    Article  Google Scholar 

  • Lancia, A., Musmarra, D., Pepe, F., Volpicelli, G., 1994. SO2 absorption in a bubbling reactor using limestone suspensions. Chemical Engineering Science, 49(24):4523–4532. [doi:10.1016/S0009-2509(05)80242-8]

    Article  Google Scholar 

  • Lancia, A., Musmarra, D., Pepe, F., 1996. Uncatalyzed heterogeneous oxidation of calcium bisulfite. Chemical Engineering Science, 51(16):3889–3896. [doi:10.1016/0009-2509(96)00222-9]

    Article  Google Scholar 

  • Lancia, A., Musmarra, D., Pepe, F., 1997. Modeling of SO2 absorption into limestone suspensions. Industrial & Engineering Chemistry Research, 36(1):197–203. [doi:10.1021/ie9602365]

    Article  Google Scholar 

  • Lopez de Bertodano, M., Lee, S.J., Lahey, R.T., Drew, D.A., 1990. The prediction of 2-phase turbulence and phase distribution phenomena using a Reynolds stress model. Journal of Fluids Engineering, 112(1):107–114. [doi:10.1115/1.2909357]

    Article  Google Scholar 

  • Muginstein, A., Fichman, M., Gutfinger, C., 2001. Gas absorption in a moving drop containing suspended solids. International Journal of Multiphase Flow, 27(6):1079–1094. [doi:10.1016/S0301-9322(00)00063-X]

    Article  MATH  Google Scholar 

  • Nagel, D., Richard, K.D., Lintnz, H.G., Roizard, C., Lapicque, F., 2002. Absorption of sulfur dioxide in N-formylmorpholine: investigations of the kinetics of the liquid phase reaction. Chemical Engineering Science, 57(22):4883–4893. [doi:10.1016/S0009-2509(02)00283-X]

    Article  Google Scholar 

  • Olausson, S., Wallin, M., Bjerle, I., 1993. A model for absorption of sulphur dioxide into a limestone slurry. The Chemical Engineering Journal, 51(2):99–108. [doi:10.1016/0300-9467(93)80016-H]

    Article  Google Scholar 

  • Pinsent, B.R.W., Pearson, L., Roughton, F.J.W., 1956. The kinetics of the combination of carbondioxide with hydroxide ions. Transactions of the Faraday Society, 52(1): 1512–1522. [doi:10.1039/TF9565201512]

    Article  Google Scholar 

  • Retieb, S., Guiraud, P., Angelov, G., Gourdon, C., 2007. Hold-up within two-phase countercurrent pulsed columns via Eulerian simulations. Chemical Engineering Science, 62(17):4558–4572. [doi:10.1016/j.ces. 2007.04. 043]

    Article  Google Scholar 

  • Romain, L., Arsam, B., Laurent, S., Yannick, J.H., Rachid, O., Badie, I.M., 2008. An algorithm for predicting the hydrodynamic and mass transfer parameters in bubble column and slurry bubble column reactors. Fuel Processing Technology, 89(1):322–343. [doi:10.1016/j.fuproc.2007.11.016]

    Google Scholar 

  • Saboni, A., Alexandrova, S., 2001. Sulfur dioxide absorption and desorption by water drops. Chemical Engineering Journal, 84(3):577–580. [doi:10.1016/S1385-8947(01)00172-3]

    Article  Google Scholar 

  • Scala, F., D’Ascenzo, M., Lancia, A., 2004. Modeling flue gas desulfurization by spray-dry absorption. Separation and Purification Technology, 34(1–3):143–153. [doi:10.1016/S1383-5866(03)00188-6]

    Article  Google Scholar 

  • Sheng, Y.L., Wen, D.X., 2006. Modeling and simulation of a bubbling SO2 absorber with granular limestone slurry and an organic acid additive. Chemical Engineering & Technology, 29(10):1167–1173. [doi:10.1002/ceat.200600101]

    Article  Google Scholar 

  • Stromberg, A.M., 1992. Prospects for Further Development of Spray-scrubbing. PhD Thesis, University of Lund.

  • Vandu, C.O., Berg, B.V.D., Krishna, R., 2005. Gas-liquid mass transfer in a slurry bubble column at high slurry concentrations and high gas velocities. Chemical Engineering & Technology, 28(9):998–1002. [doi:10.1002/ceat.200500151]

    Article  Google Scholar 

  • Yeh, N.K., Rochelle, G.T., 2003. Liquid-phase mass transfer in spray contactors. AIChE Journal, 49(9):2363–2373. [doi:10.1002/aic.690490912]

    Article  Google Scholar 

  • Zhang, Q.Y., Wei, Y.M., Chen, Y.X., Guo, H., 2007. Environmental damage costs from fossil electricity generation in China, 2000–2003. Journal of Zhejiang University-SCIENCE A, 8(11):1816–1825. [doi:10.1631/jzus.2007.A1816]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Gao.

Additional information

Project supported by the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAA01B04) and the New Century Excellent Talent in University (No. NCET-06-0513), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Huo, W., Luo, Zy. et al. CFD simulation with enhancement factor of sulfur dioxide absorption in the spray scrubber. J. Zhejiang Univ. Sci. A 9, 1601–1613 (2008). https://doi.org/10.1631/jzus.A0820507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820507

Key words

CLC number

Navigation