Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 8, pp 1153–1159 | Cite as

Mesh parameterization based on edge collapse

  • Jiang Qian
  • Xiu-zi Ye
  • Cui-hao Fang
  • San-yuan Zhang
Article
  • 58 Downloads

Abstract

Parameterizations that use mesh simplification to build the base domain always adopt the vertex removal scheme. This paper applies edge collapse to constructing the base domain instead. After inducing the parameterization of the original mesh over the base domain, new algorithms map the new vertices in the simplified mesh back to the original one according to the edge transition sequence to integrate the parameterization. We present a direct way, namely edge classification, to deduce the sequence. Experimental results show that the new parameterization features considerable saving in computing complexity and maintains smoothness.

Key words

Edge collapse Vertex removal Mapping Edge classification 

CLC number

TP391.7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, J.D., 1999. Concepts and Algorithms for Polygon Simplification. Proc. ACM SIGGRAPH, Course Notes, p.C1–C34.Google Scholar
  2. Duchamp, T., Certain, A., Derose, T., Stuetzle, W., 1997. Hierarchical Computation of PL Harmonic Embeddings. Technical Report, University of Washington, Washington, D.C., USA.Google Scholar
  3. Garland, M., Heckbert, P., 1997. Surface Simplification Using Quadric Error Metrics. Proc. ACM. SIGGRAPH, p.209–216. [doi:10.1145/258734.258849]Google Scholar
  4. Guskov, I., Vidimce, K., Sweldens, W., Schroder, P., 2000. Normal Meshes. Proc. ACM SIGGRAPH, p.95–102. [doi:10.1145/344779.344831]Google Scholar
  5. Heckbert, P., Garland, M., 1997. Survey of Polygonal Surface Simplification Algorithms. Proc. ACM SIGGRAPH, Multiresolution Surface Modeling Course Notes, p.1–31.Google Scholar
  6. Khodakovsky, A., Schroder, P., Sweldens, W., 2000. Progressive Geometry Compression. Proc. ACM SIGGRAPH, p.271–278. [doi:10.1145/344779.344922]Google Scholar
  7. Khodakovsky, A., Litke, N., Schroder, P., 2003. Globally Smooth Parameterizations with Low Distortion. Proc. ACM SIGGRAPH, p.350–357. [doi:10.1145/201775.882275]Google Scholar
  8. Lee, A., Sweldens, W., Schroder, P., Cowsar, L., Dobkin, D., 1998. MAPS: Multiresolution Adaptive Parameterization of Surfaces. Proc. ACM SIGGRAPH, p.95–104. [doi:10.1145/280814.280828]Google Scholar
  9. Lee, A., Dobkin, D., Sweldens, W., Schroder, P., 1999. Multiresolution Mesh Morphing. Proc. ACM SIGGRAPH, p.343–350. [doi:10.1145/311535.311586]Google Scholar
  10. Levy, B., Petitjean, S., Ray, N., Maillot, J., 2002. Least squares conformal maps for automatic texture atlas generation, ACM Trans. Graph., 21(3):362–371. [doi:10.1145/566654.566590]CrossRefGoogle Scholar
  11. Luebke, D., 2001. A developer’s survey of polygonal simplification algorithms, IEEE Comput. Graph. Appl., 21(1):24–35. [doi:10.1109/38.920624]CrossRefGoogle Scholar
  12. Schroeder, W.J., Zarge, J.A., Lorensen, W.E., 1992. Decimation of Triangle Meshes. Proc. 19th Annual Conf. on Computer Graphics and Interactive Techniques, p.65–70. [doi:10.1145/133994.134010]Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Jiang Qian
    • 1
  • Xiu-zi Ye
    • 1
  • Cui-hao Fang
    • 1
  • San-yuan Zhang
    • 1
  1. 1.State Key Lab of CAD & CG, School of Computer Science and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations