Journal of Zhejiang University-SCIENCE A

, Volume 9, Issue 10, pp 1331–1335 | Cite as

Model for cascading failures in congested Internet

Science Letters

Abstract

Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing functions based on betweenness centrality. By introducing the concept of ‘delay time’, we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation function of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.

Key words

Complex network Cascading failures Congestion effects Propagation model 

Document code

CLC number

TP393.08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Jeong, H., Barabási, A.L., 2000. The Internet’s Achilles’ heel: error and attack tolerance of complex networks. Nature, 406(6794):378–382. [doi:10.1038/35019019]CrossRefGoogle Scholar
  2. Ash, J., Newth, D., 2007. Optimizing complex networks for resilience against cascading failure. Phys. A, 380:673–383. [doi:10.1016/j.physa.2006.12.058]CrossRefGoogle Scholar
  3. Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science, 286(5439):509–511. [doi:10.1126/science.286.5439.509]MathSciNetCrossRefMATHGoogle Scholar
  4. Bollobás, B., 1985. Random Graphs. Academic Press, London, UK.MATHGoogle Scholar
  5. Chang, D.B., Young, C.S., 2005. Infection dynamics on the Internet. Comput. Secur., 24(4):280–286. [doi:10.1016/j.cose.2005.03.004]CrossRefGoogle Scholar
  6. Cholvi, V., 2006. Dissemination of information in complex networks with congestion. Phys. A, 366:571–577. [doi:10.1016/j.physa.2005.10.030]CrossRefGoogle Scholar
  7. Galstyan, A., Cohen, P., 2007. Cascading dynamics in modular networks. Phys. Rev. E, 75:036109. [doi:10.1103/PhysRevE.75.036109]CrossRefGoogle Scholar
  8. Motter, A.E., Lai, Y.C., 2002. Cascade-based attacks on complex networks. Phys. Rev. E, 66(6):065102. [doi:10.1103/PhysRevE.66.065102]CrossRefGoogle Scholar
  9. Sharma, S., Srivastava, L., 2008. Prediction of transmission line overloading using intelligent technique. Appl. Soft Comput., 8(1):626–633. [doi:10.1016/j.asoc.2007.05.001]MathSciNetCrossRefGoogle Scholar
  10. Shen, B., Gao, Z.Y., 2008. Dynamical properties of transportation on complex networks. Phys. A, 387(5–6):1352–1360. [doi:10.1016/j.physa.2007.10.035]CrossRefGoogle Scholar
  11. Wang, W.X., Chen, G.R., 2008. Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E, 77(2):026101. [doi:10.1103/PhysRevE.77.026101]CrossRefGoogle Scholar
  12. Wu, J.J., Gao, Z.Y., Sun, H.J., 2007a. Effects of the cascading failures on scale-free traffic networks. Phys. A, 378(2):505–511. [doi:10.1016/j.physa.2006.12.003]CrossRefGoogle Scholar
  13. Wu, J.J., Sun, H.J., Gao, Z.Y., 2007b. Cascading failures on weighted urban traffic equilibrium network. Phys. A, 386(1):407–413. [doi:10.1016/j.physa.2007.08.034]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and TechnologyJilin UniversityChangchunChina

Personalised recommendations