Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 3, pp 398–417 | Cite as

Liquid film dryout model for predicting critical heat flux in annular two-phase flow

Review

Abstract

Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposition and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed.

Key words

Annular two-phase flow Critical heat flux (CHF) Liquid film dryout Deposition rate Entrainment rate 

CLC number

O51 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, L.G., Coldren, C.L., 1951. Droplet transfer from suspending air to duct walls. Industrial & Engineering Chemistry, 43:1325–1331.CrossRefGoogle Scholar
  2. Andreussi, P., 1983. Droplet transfer in two-phase annular flow. International Journal of Multiphase Flow, 9(6):697–713. [doi:10.1016/0301-9322(83)90117-9]CrossRefMATHGoogle Scholar
  3. Andreussi, P., Azzopardi, B.J., 1983. Droplet deposition and interchange in annular two-phase flow. International Journal of Multiphase Flow, 9(6):681–695. [doi:10.1016/0301-9322(83)90116-7]CrossRefMATHGoogle Scholar
  4. Armand, A.A., 1964. Resistance with motion of a two-phase system along horizontal tubes. Izv. Vses. Teplotekh. Inst., 1:16–23.Google Scholar
  5. Asali, J.C., 1984. Entrainment in Vertical Gas-liquid Annular Flow. PhD Thesis, University of Illinois.Google Scholar
  6. Asali, J.C., Hanratty, T.J., Andreussi, P., 1985. Interfacial drag and film height for vertical annular flow. AIChE Journal, 31(6):895–902. [doi:10.1002/aic.690310604]CrossRefGoogle Scholar
  7. Azzopardi, B.J., 1997. Drops in annular two-phase flow. International Journal of Multiphase Flow, 23(7):1–53. [doi:10.1016/S0301-9322(97)90087-2]CrossRefMATHGoogle Scholar
  8. Azzopardi, B.J., Whalley, P.B., 1980. Artificial Waves in Annular Two-phase Flow ASME Winter Annual Meeting. Published in Basic Mechanisms in Two-phase Flow and Heat Transfer, Chicago, p.1–8.Google Scholar
  9. Azzopardi, B.J., Taylor, S., Gibbons, D.B., 1983. Annular Two Phase Flow in a Large Diameter Tube. International Conference on the Physical Modeling of Multi-phase Flow, Coventry, p.267–282.Google Scholar
  10. Bai, B.F., Huang, R., Guo, L.J., Xiao, Z.J., 2003. Physical model of critical heat flux with annular flow in annulus tubes. Journal of Engineering Thermophysics, 24(2):251–254 (in Chinese).Google Scholar
  11. Bennett, A.W., 1969. Measurement of Liquid Film Flow Rates at 1000 Pisa in Upward Steam Water Flow in a Vertical Heated Tube. AERE-R-5809, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  12. Bennett, A.W., Hewitt, G.F., Kearsey, H.A., Keeys, R.K.F., Pulling, D.J., 1966. Studies of Burnout in Boiling Heat Transfer to Water in Round Tubes with Non-uniform Heating. AERE-R-5076, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  13. Brown, D.J., 1978. Disequilibrium Annular Flow. PhD Thesis, University of Oxford.Google Scholar
  14. Brown, D.J., Jensen, A., Whalley, P.B., 1975. Non-equilibrium Effects in Heated and Unheated Annular Two Phase Flow. ASME Paper No. 75-WA/HT-7.Google Scholar
  15. Celata, G.P., Mishima, K., Zummo, G., 2001. Critical heat flux prediction for saturated flow boiling of water in vertical tubes. International Journal of Heat and Mass Transfer, 44(22):4323–4331. [doi:10.1016/S0017-9310(01)00072-2]CrossRefMATHGoogle Scholar
  16. Collier, J.G., 1972. Convective Boiling and Condensation. McGraw-Hill, New York.Google Scholar
  17. Collier, J.G., Hewitt, G.F., 1961. Data on the vertical flow of air-water mixtures in the annular and dispersed flow regions, Part II: film thickness and entrainment data and analysis of pressure drop measurements. Transactions of the Institution of Chemical Engineers, 39:127–144.Google Scholar
  18. Cousins, L.B., Hewitt, G.F., 1968a. Liquid Phase Mass Transfer in Annular Two-phase Flow: Droplet Deposition and Liquid Entrainment. AERE-R-5657, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  19. Cousins, L.B., Hewitt, G.F., 1968b. Liquid Phase Mass Transfer in Annular Two-phase Flow: Radial Liquid Mixing. AERE-R-5693, United Kingdom Atomic Energy Authority. Reactor Group. Atomic Energy Establishment, England.Google Scholar
  20. Cousins, L.B., Denton, W.H., Hewitt, G.F., 1965. Liquid Mass Transfer in Annular Two-phase Flow. Proceedings of Symposium on Two-phase Flow, Exeter, UK, Paper C4.Google Scholar
  21. Dallman, J.C., Jones, B.G., Hanratty, T.J., 1979. Interpretation of Entrainment Measurements in Annular Gas-liquid Flow, Two-phase Momentum Heat and Mass Transfer. Hemisphere, Washington DC, p.681–693.Google Scholar
  22. Dykhno, L.A., Hanratty, T.J., 1996. Use of the interchange model to predict entrainment in vertical annular flow. Chemical Engineering Communications, 141-142:207–235.CrossRefGoogle Scholar
  23. Fan, P., Qiu, S.Z., Jia, D.N., 2006. An investigation of flow characteristics and critical heat flux in vertical upward round tube. Nuclear Science and Techniques, 17(3):170–176. [doi:10.1016/S1001-8042(06)60033-X]CrossRefGoogle Scholar
  24. Gill, L.E., Hewitt, G.F., Hitchon, J.W., Lacey, P.M.C., 1962. Sampling Probe Studies of the Gas Core in Annular Two-phase Flow: Part 1: the Effect of Length on Phase and Velocity Distribution. AERE-R-3954, United Kingdom Atomic Energy Authority. Reactor Group. Atomic Energy Establishment, England.Google Scholar
  25. Gill, L.E., Hewitt, G.F., Lacey, P.M.C., 1964. Sampling probe studies of the gas core in annular two-phase flow: II, studies of the effect of phase flowrates on phase and velocity distributions. Chemical Engineering Science, 19(9):665–682.CrossRefGoogle Scholar
  26. Gill, L.E., Hewitt, G.F., Roberts, D.N., 1969. Studies of the Behaviour of Disturbance Waves in a Long Vertical Tube. AERE-R-6012, United Kingdom Atomic Energy Authority. Reactor Group. Atomic Energy Establishment, England.Google Scholar
  27. Govan, A.H., 1988. Phenomenological Prediction of Critical Heat Flux. Proceeding of the 2nd UK National Heat Transfer Conference, p.315–326.Google Scholar
  28. Govan, A.H., Hewitt, G.F., Owen, D.G., Bott, T.R., 1988. An Improved CHF Modeling Code. Proceeding of the 2nd UK National Heat Transfer Conference, p.33–48.Google Scholar
  29. Hanratty, T.J., Woods, B.D., Iliopoulos, I., Pan, L., 2000. The roles of interfacial stability and particle dynamics in multiphase flows: a personal viewpoint. International Journal of Multiphase Flow, 26(2):169–190. [doi:10.1016/S0301-9322(99)00004-X]CrossRefMATHGoogle Scholar
  30. Hay, K.J., Liu, Z.C., Hanratty, T.J., 1996. Relation of deposition to drop size when the rate law is nonlinear. International Journal of Multiphase Flow, 22(5):829–848. [doi:10.1016/0301-9322(96)00029-8]CrossRefMATHGoogle Scholar
  31. Hewitt, G.F., Pulling, D.J., 1969. Liquid Entrainment in Adiabatic Steam-water Flow. AERE-R-5374, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  32. Hewitt, G.F., Hall-Taylor, N.S., 1970. Annular Two-phase Flow. Pergamon Press, Oxford.Google Scholar
  33. Hewitt, G.F., Govan, A.H., 1990. Phenomenological modeling of non-equilibrium flows with phase change. International Journal of Heat and Mass Transfer, 33(2):229–242. [doi:10.1016/0017-9310(90)90094-B]CrossRefGoogle Scholar
  34. Hewitt, G.F., Kearsey, H.A., Keeys, R.K.F., 1969. Determination of Rate of Deposition of Droplets in a Heated Tube with Steam-water Flow at 1000 Psia. AERE-R-6118, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  35. Hujghe, J., Mondin, H., 1961. Transfert de chaleur par melange de liquide et de gas en convection force turbulente aves faible vaporisation de la phase liquide. C. R. Hebd. Seanc. Acad. Sci. Paris, 253:395–397.Google Scholar
  36. Hutchinson, P., Whalley, P.B., 1973. A possible characterisation of entrainment in annular flow. Chemical Engineering Science, 28(3):974–975. [doi:10.1016/0009-2509(77)80034-1]CrossRefGoogle Scholar
  37. Ishii, M., Grolmes, M.A., 1975. Inception criteria for droplet entrainment in two-phase concurrent film flow. AIChE Journal, 21(2):308–318. [doi:10.1002/aic.690210212]CrossRefGoogle Scholar
  38. Ishii, M., Mishima, K., 1981. Correlation for Liquid Entrainment in Annular Two-phase Flow of Low Viscous Fluid. ANL RAS LWR 81-2, Argonne National Laboratory.Google Scholar
  39. Ishii, M., Mishima, K., 1989. Droplet entrainment correlation in annular two-phase flow. International Journal of Heat and Mass Transfer, 32(10):1835–1846. [doi:10.1016/0017-9310(89)90155-5]CrossRefGoogle Scholar
  40. Jepson, D.M., 1992. Vertical Annular Flow: the Effect of Physical Properties. PhD Thesis, University of Oxford.Google Scholar
  41. Kataoka, I., Ishii, M., Nakayama, A., 2000. Entrainment and deposition rates of droplets in annular two-phase flow. International Journal of Heat and Mass Transfer, 43(9):1573–1589. [doi:10.1016/S0017-9310(99)00236-7]CrossRefMATHGoogle Scholar
  42. Katto, Y., 1984. Prediction of critical heat flux for annular flow in tubes taking into account the critical liquid film thickness concept. International Journal of Heat and Mass Transfer, 27(6):883–891. [doi:10.1016/0017-9310(84)90009-7]CrossRefGoogle Scholar
  43. Keeys, R.F.K., 1970. The Effect of Heat Flux on Liquid Entrainment in Steam-water Flow in a Vertical Tube at 1000 Pisa. AERE-R-6294, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  44. Keeys, R.F.K., Ralph, J.C., Roberts, D.N., 1970. Liquid Entrainment in Adiabatic Steam-water Flow at 500 and 1000 Psia. AERE-R-6293, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  45. Lee, D.H., 1965. An Experimental Investigation of Forced Convection Burnout in High Pressure Water: Part 3 Long Tubes with Uniform and Non-uniform Axial Heating. AEEW-R355.Google Scholar
  46. Lee, D.H., Obertelli, J.D., 1963. An Experimental Investigation of Forced Convection Burnout in High Pressure Water: Part 2 Preliminary Results for Round Tubes with Non-uniform Axial Heat Flux Distribution. AEEW-R309.Google Scholar
  47. Lee, K.W., Baik, S.J., Ro, T.S., 2000. An utilization of liquid sublayer dryout mechanism in predicting critical heat flux under low pressure and low velocity conditions in round tubes. Nuclear Engineering and Design, 200(1–2):69–81. [doi:10.1016/S0029-5493(99)00335-0]CrossRefGoogle Scholar
  48. Leman, G.W., 1983. Effects of Liquid Viscosity in Two-Phase Annular Flow. PhD Thesis, University of Illinois.Google Scholar
  49. Lopez de Bertodano, M.A., Jan, C.S., Beus, S.G., 1997. Annular flow entrainment rate experiment in a small vertical pipe. Nuclear Engineering and Design, 178(1–2):61–70. [doi:10.1016/S0029-5493(97)00175-1]CrossRefGoogle Scholar
  50. Magiros, P.G., Dukler, A.E., 1961. Entrainment and Pressure Drop in Concurrent Gas-liquid Flow. Proceedings of the 7th Midwestern Mechanics Conference, p.532–553.Google Scholar
  51. Mingh, T.Q., 1965. Some Hydrodynamic Aspects of Annular Dispersed Flow, Entrainment and Film Thickness. Two-phase Flow Symposium, Exeter, UK, Paper C2.Google Scholar
  52. Mishima, K., Ishii, M., 1984. Flow regime transition criteria for upward two-phase flow in vertical tubes. International Journal of Heat and Mass Transfer, 27(5):723–737. [doi:10.1016/0017-9310(84)90142-X]CrossRefGoogle Scholar
  53. Namie, S., Ueda, T., 1972. Droplet transfer in two-phase annular mist flow (PART 1 experiment of droplet transfer rate and distributions of droplet concentration and velocity). Bulletin JSME, 15:1568–1580.CrossRefGoogle Scholar
  54. Namie, S., Ueda, T., 1973. Droplet transfer in two-phase annular mist flow (PART 2 prediction of droplet transfer rate). Bulletin JSME, 16:752–764.CrossRefGoogle Scholar
  55. Nigmatulin, B.I., Malyshenko, V.I., Shugaev, Y.Z., 1976. Investigation of liquid distribution between the core and the film in annular dispersed flow of steam-water mixture. Teploenergetika, 23(5):66–68.Google Scholar
  56. Okawa, T., Kataoka, I., 2005. Correlations for the mass transfer rate of droplets in vertical upward annular flow. International Journal of Heat and Mass Transfer, 48(23–24):4766–4778. [doi:10.1016/j.ijheatmasstransfer.2005.06.014]CrossRefGoogle Scholar
  57. Okawa, T., Kitahara, T., Yoshida, K., Matsumoto, T., Kataoka, I., 2002. New entrainment rate correlation in annular two-phase flow applicable to wide range of flow condition. International Journal of Heat and Mass Transfer, 45(1):87–98. [doi:10.1016/S0017-9310(01)00111-9]CrossRefMATHGoogle Scholar
  58. Okawa, T., Kotani, A., Kataoka, I., Naito, M., 2003. Prediction of critical heat flux in annular flow using a film flow model. Journal of Nuclear Science and Technology, 40(6):388–396. [doi:10.3327/jnst.40.388]CrossRefGoogle Scholar
  59. Okawa, T., Kotani, A., Kataoka, I., 2004a. Experiments for Equilibrium Entrainment Fraction in a Small Vertical Tube. Proceedings of the 5th International Conference Multiphase Flow, Yokohama, Paper 224.Google Scholar
  60. Okawa, T., Kotani, A., Kataoka, I., Naitoh, M., 2004b. Prediction of the critical heat flux in annular regime in various vertical channels. Nuclear Engineering and Design, 229(2–3):223–236. [doi:10.1016/j.nucengdes.2004.01.005]CrossRefGoogle Scholar
  61. Okawa, T., Kotani, A., Kataoka, I., 2005. Experiments for liquid phase mass transfer rate in annular regime for a small vertical tube. International Journal of Heat and Mass Transfer, 48(3–4):585–598. [doi:10.1016/j.ijheamasstransfer.2004.08.030]CrossRefGoogle Scholar
  62. Olson, R.M., Eckert, E.R.G., 1966. Experimental studies of turbulent flow in a porous circular tube with uniform fluid injection through the tube wall. Transactions of the ASME Journal of Applied Mechanics, 33(4):7–17.CrossRefGoogle Scholar
  63. Owen, D.G., Hewitt, G.F., 1986. A Proposed Entrainment Correlation. AERE-R-12279, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  64. Owen, D.G., Hewitt, G.F., 1987. An Improved Annular Two-Phase Flow Model. Proceedings of the 3rd International Conference on Multiphase Flow, the Hague, the Netherlands.Google Scholar
  65. Owen, D.G., Hewitt, G.F., Bott, T.R., 1985. Equilibrium annular flows at high mass fluxes data and interpretation. PCH Physicochemical Hydrodynamics, 6:115–131.Google Scholar
  66. Paleev, I.I., Agafonova, F.A., 1962. Heat Transfer between a Hot Surface and a Gas Flow Entraining Drops of Evaporating Liquid. Proceedings of the 1st All-Union Heat and Mass Transfer Conference, Minsk, p.260–268.Google Scholar
  67. Paleev, I.I., Filippovich, B.S., 1966. Phenomena of liquid transfer in two-phase dispersed annular flow. International Journal of Heat and Mass Transfer, 9(10):1089–1093. [doi:10.1016/0017-9310(66)90031-7]CrossRefGoogle Scholar
  68. Pan, L., Hanratty, T.J., 2002. Correlation of entrainment for annular flow in vertical pipes. International Journal of Multiphase Flow, 28(3):363–384. [doi:10.1016/S0301-9322(01)00073-8]CrossRefMATHGoogle Scholar
  69. Peng, S.W., 2008. Heat flux effect on the droplet entrainment and deposition in annular flow dryout. Communications in Nonlinear Science and Numerical Simulation, 13(10):2223–2235. [doi:10.1016/j.cnsns.2007.06.008]CrossRefGoogle Scholar
  70. Rossum, J.J.V., 1951. Experimental investigation of horizontal liquid films: wave formation, atomization, film thickness. Chemical Engineering Science, 11(2):35–52.Google Scholar
  71. Saito, T., Hughes, E.D., Carbon, M.W., 1978. Multi-fluid modeling of annular two-phase flow. Nuclear Engineering and Design, 50(2):225–271. [doi:10.1016/0029-5493(78)90041-9]CrossRefGoogle Scholar
  72. Schadel, S.A., Leman, G.W., Binder, J.L., Hanratty, T.J., 1990. Rates of atomization and deposition in vertical annular flow. International Journal of Multiphase Flow, 16(3):363–374. [doi:10.1016/0301-9322(90)90069-U]CrossRefMATHGoogle Scholar
  73. Singh, K., Pierre, C.C.S., Crago, W.A., Moeck, E.O., 1969. Liquid film flowrates in two-phase flow of steam and water at 1000 psia. AIChE Journal, 15(1):51–56. [doi:10.1002/aic.690150115]CrossRefGoogle Scholar
  74. Steen, D.A., Wallis, G.B., 1964. The Transition from Annular to Annular Mist Concurrent Two Phase Down Flow. AEC Report NYO-3114-2.Google Scholar
  75. Sugawara, S., 1990. Droplet deposition and entrainment modeling based on the three-fluid model. Nuclear Engineering and Design, 122(1–3):67–84. [doi:10.1016/0029-5493(90)90197-6]CrossRefGoogle Scholar
  76. Ueda, T., 1979a. Droplet entrainment rate and droplet diameter in annular two-phase flow. Bulletin JSME, 45:127–135.CrossRefGoogle Scholar
  77. Ueda, T., 1979b. Entrainment rate and size distribution of entrained droplets in annular two-phase flow. Bulletin JSME, 22:1258–1265.CrossRefGoogle Scholar
  78. Ueda, T., Inoue, M., Nagatome, S., 1981. Critical heat flux and droplet entrainment rate in boiling of falling liquid films. International Journal of Heat and Mass Transfer, 24(7):1257–1266. [doi:10.1016/0017-9310(81)90175-7]CrossRefGoogle Scholar
  79. Utsuno, H., Kaminaga, F., 1998. Prediction of liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube development of analytical method under BWR conditions. Journal of Nuclear Science and Technology, 35(9):643–653. [doi:10.3327/jnst.35.643]CrossRefGoogle Scholar
  80. Wallis, G.B., 1961. Flooding Velocities for Air and Water Vertical Tubes. AEEW-R-123, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  81. Wallis, G.B., 1969. One-dimensional Two-phase Flow. McGraw-Hill, New York.Google Scholar
  82. Whalley, P.B., 1977. The calculation of dryout in a rod bundle. International Journal of Multiphase Flow, 3(6):501–515. [doi:10.1016/0301-9322(77)90026-X]CrossRefMATHGoogle Scholar
  83. Whalley, P.B., Jepson, D.M., 1994. Entrainment and Deposi tion in Annular Gas-liquid Flow: the Effect of Fluid Physical Properties. Proceedings of the 10th International Heat Transfer Conference, Brighton, UK, p.289–294.Google Scholar
  84. Whalley, P.B., Hewitt, G.F., Hutchinson, P., 1973. Experimental Wave and Entrainment Measurements in Vertical Annular Two-phase Flow. AERE-R-7521, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.Google Scholar
  85. Whalley, P.B., Hutchinson, P., Hewitt, G.F., 1974. Calculation of Critical Heat Flux in Forced Convection Boiling. Proceedings of the 5th International Heat Transfer Conference, Tokyo, Japan, p.290–294.Google Scholar
  86. Wicks, M., Dukler, A.E., 1960. Entrainment and pressure drop in concurrent gas-liquid flow: air water in horizontal flow. AIChE Journal, 6(3):463–468. [doi:10.1002/aic.690060324]CrossRefGoogle Scholar
  87. Willetts, I.P., 1987. Non-aqueous Annular Two-phase Flow. PhD Thesis, University of Oxford.Google Scholar
  88. Woodmansee, D.E., Hanratty, T.J., 1969. Mechanism for the removal of droplets from a liquid surface by a parallel air flow. Chemical Engineering Science, 24(2):299–307. [doi:10.1016/0009-2509(69)80038-2]CrossRefGoogle Scholar
  89. Wurtz, J., 1978a. Entrainment in Annular Steam-water Flow. European Two-phase Flow Group Meeting, Stockholm, Paper A4.Google Scholar
  90. Wurtz, J., 1978b. An experimental and Theoretical Investigation of Annular Steam-water Flow in Tubes and Annuli at 30 to 90 bar. Riso Report No. 372, Riso National Laboratory.Google Scholar
  91. Yanai, M., 1971. Study on Boiling Heat Transfer in a Flow Channel. PhD Thesis, Kyoto University.Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Bo Jiao
    • 1
  • Li-min Qiu
    • 1
  • Jun-liang Lu
    • 1
  • Zhi-hua Gan
    • 1
  1. 1.Institute of Refrigeration and Cryogenic EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations