Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 1, pp 72–81 | Cite as

On the vein-stiffening membrane structure of a dragonfly hind wing

  • Zhong-xue Li
  • Wei Shen
  • Gen-shu Tong
  • Jia-meng Tian
  • Loc Vu-Quoc
Article

Abstract

Aiming at exploring the excellent structural performance of the vein-stiffening membrane structure of dragonfly hind wings, we analyzed two planar computational models and three 3D computational models with cambered corrugation based on the finite element method. It is shown that the vein size in different zones is proportional to the magnitude of the vein internal force when the wing structure is subjected to uniform out-of-plane transverse loading. The membrane contributes little to the flexural stiffness of the planar wing models, while exerting an immense impact upon the stiffness of the 3D wing models with cambered corrugation. If a lumped mass of 10% of the wing is fixed on the leading edge close to the wing tip, the wing fundamental frequency decreases by 10.7%∼13.2%; if a lumped mass is connected to the wing via multiple springs, the wing fundamental frequency decreases by 16.0%∼18.0%. Such decrease in fundamental frequency explains the special function of the wing pterostigma in alleviating the wing quivering effect. These particular features of dragonfly wings can be mimicked in the design of new-style reticulately stiffening thin-walled roof systems and flapping wings in novel intelligent aerial vehicles.

Key words

Dragonfly wing Venation pattern Wing membrane Pterostigma Bionics Quivering effect 

CLC number

TH113 TH161 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Ahmad, S., Irons, B.M., Zienkiewicz, O.C., 1970. Analysis of thick and thin shell structures by curved finite elements. International Journal for Numerical Methods in Engineering, 2(3):419–451. [doi:10.1002/nme.1620020310]CrossRefGoogle Scholar
  2. Bradshaw, R., Campbell, D., Gargari, M., Mirmiran, A., Tripeny, P., 2002. Special structures: past, present, and future. Journal of Structural Engineering ASCE, 128(6):691–709. [doi:10.1061/(ASCE)0733-9445(2002) 128:6(691)]CrossRefGoogle Scholar
  3. Combes, S.A., Daniel, T.L., 2003a. Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17):2979–2987. [doi:10.1242/jeb.00502]CrossRefGoogle Scholar
  4. Combes, S.A., Daniel, T.L., 2003b. Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. Journal of Experimental Biology, 206(17):2989–2997. [doi:10.1242/jeb.00524]CrossRefGoogle Scholar
  5. Cook, R.D., 1981. Concepts and Applications of Finite Element Analysis. John Wiley & Sons, New York.MATHGoogle Scholar
  6. Dillmann, R., Albiez, J., Gamann, B., Kerscher, T., 2005. Biologically Motivated Control of Walking Machines. In: Armada, M.A., Santos, P.G. (Eds.), Climbing and Walking Robots, Springer, Berlin, Heidelberg, p.55–69. [doi:10.1007/3-540-29461-9_4]CrossRefGoogle Scholar
  7. Dudley, R., 2000. The Biomechanics of Insect Flight: Form, Function Evolution. Princeton University Press, Princeton.Google Scholar
  8. Ellington, C.P., 1999. The novel aerodynamics of insect flight: applications to micro-air vehicles. Journal of Experimental Biology, 202(23):3439–3448.Google Scholar
  9. Feng, P., Ye, L.P., Teng, J.G., 2007. Large-span woven web structure made of fiber-reinforced polymer. Journal of Composites for Construction, 11(2):110–119. [doi:10.061/(ASCE)1090-0268(2007)11:2(110)]CrossRefGoogle Scholar
  10. Fest, E., Shea, K., Domer, B., Smith, I.F.C., 2003. Adjustable tensegrity structures. Journal of Structural Engineering ASCE, 129(4):515–526. [doi:10.1061/(ASCE)0733-9445(2003)129:4(515)]CrossRefGoogle Scholar
  11. Holgate, A., 1990. Aesthetics of thin-walled structures. Thin-Walled Structures, 9(1–4):437–457. [doi:10.1016/0263-8231(90)90057-6]CrossRefGoogle Scholar
  12. Ibrahimbegovic, A., 1995. On finite element implementation of geometrically nonlinear reissner’s beam theory: three-dimensional curved beam elements. Computer Methods in Applied Mechanics and Engineering, 122(1–2):11–26. [doi:10.1016/0045-7825(95)00724-F]CrossRefMATHGoogle Scholar
  13. Isler, H., 1986. Concrete shells and architecture. Bulletin of the International Association for Shell and Spatial Structures, 27(2):39–42.MathSciNetGoogle Scholar
  14. Izzuddin, B.A., 2005. An enhanced co-rotational approach for large displacement analysis of plates. International Journal for Numerical Methods in Engineering, 64(10):1350–1374. [doi:10.1002/nme.1415]CrossRefMATHGoogle Scholar
  15. Kawaguchi, M., Tatemichi, I., Chen, P.S., 1999. Optimum shapes of a cable dome structure. Engineering Structures, 21(8):719–725. [doi:10.1016/S0141-0296(98)00026-1]CrossRefGoogle Scholar
  16. Kesel, A.B., Philippi, U., Nachtigall, W., 1998. Biomechanical aspects of the insect wing: an analysis using the finite element method. Computers in Biology and Medicine, 28(4):423–437. [doi:10.1016/S0010-4825(98)00018-3]CrossRefGoogle Scholar
  17. Li, Z.X., 2007a. A mixed co-rotational formulation of 2D beam element using vectorial rotational variables. Communications in Numerical Methods in Engineering, 23(1):45–69. [doi:10.1002/cnm.882]MathSciNetCrossRefMATHGoogle Scholar
  18. Li, Z.X., 2007b. A co-rotational formulation for 3D beam element using vectorial rotational variables. Computational Mechanics, 39(3):309–322. [doi:10.1007/s00466-006-0029-x]CrossRefMATHGoogle Scholar
  19. Li, Z.X., Zheng, Y., 2005. Studies on the Flexible Wings of an Intelligent Aerocraft. In: Zhang, G.T., Xing, Q.H. (Eds.), Proceeding of the 1st Annual Academic Conference of Chinese Society of Astronautics. Astronautic Publishing House, Beihai, China, p.730–733 (in Chinese).Google Scholar
  20. Li, Z.X., Vu-Quoc, L., 2007. An efficient co-rotational formulation for curved triangular shell element. International Journal for Numerical Methods in Engineering, 72(9):1029–1062. [doi:10.1002/nme.2064]MathSciNetCrossRefMATHGoogle Scholar
  21. Li, Z.X., Izzuddin, B.A., Vu-Quoc, L., 2008. A 9-node co-rotational quadrilateral shell element. Computational Mechanics, 42(6):873–884. [doi:10.1007/s00466-008-0289-8]CrossRefMATHGoogle Scholar
  22. Liddell, W.I., Miller, P.W., 1999. Design and construction of the millennium dome. Structural Engineering International, 9(3):172–175. [doi:10.2749/101686699780482023]CrossRefGoogle Scholar
  23. Mcrobie, F.A., Lasenby, J., 1999. Simo-Vu Quoc rods using clifford algebra. International Journal for Numerical Methods in Engineering, 45(4):377–398. [doi:10.1002/(SICI)1097-0207(19990610)45:4〈377::AID-NME586〉3.3.CO;2-G]MathSciNetCrossRefMATHGoogle Scholar
  24. Norberg, R.A., 1972. The pterostigma of insect wings an inertial regulator of wing pitch. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 81(1):9–22. [doi:10.1007/BF00693547]CrossRefGoogle Scholar
  25. Norberg, U.M.L., 2002. Structure, form, and function of flight in engineering and the living world. Journal of Morphology, 252(1):52–81. [doi:10.1002/jmor.10013]CrossRefGoogle Scholar
  26. Okamoto, M., Yasuda, K., Azuma, A., 1996. Aerodynamic characteristics of the wings and body of a dragonfly. Journal of Experimental Biology, 199(2):281–294.Google Scholar
  27. Schlaich, J., Bergermann, R., Sobek, W., 1994. Air-inflated roof over the Roman amphitheatre at Nimes. Structural Engineering Review, 6(3–4):203–214.Google Scholar
  28. Shapiro, J., 1955. Principles of Helicopter Engineering. Temple Press, London, p.365.Google Scholar
  29. Shen, W., 2006. Studies on New-style Reticulately Stiffening Thin-walled Cantilever by Bionic Modeling of Dragonfly Wings. MS Thesis, Zhejiang University, Hangzhou, p.53–76 (in Chinese).Google Scholar
  30. Shyy, W., Berg, M., Ljungqvist, D., 1999. Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences, 35(5):455–505. [doi:10.1016/S0376-0421(98)00016-5]CrossRefGoogle Scholar
  31. Simo, J.C., Vu-Quoc, L., 1986. A three-dimensional finite-strain rod model. Part II: computational aspects. Computer Methods in Applied Mechanics and Engineering, 58(1):79–116. [doi:10.1016/0045-7825(86)90079-4]CrossRefMATHGoogle Scholar
  32. Somervill, B.A., 2005. The History of the Airplane. The Child’s World Inc. Chanhassen, Minnesota.Google Scholar
  33. Sudo, S., Tsuyuki, K., Tani, J., 2000. Wing morphology of some insects. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 43(4):895–900.CrossRefGoogle Scholar
  34. Sun, Z.J., Zhang, Q.L., 2005. A study on pre-tension measurement of membrane structures. International Journal of Space Structures, 20(2):71–82. [doi:10.1260/0266351054764236]CrossRefGoogle Scholar
  35. Sunada, S., Zeng, L.J., Kawachi, K., 1998. The relationship between dragonfly wing structure and torsional deformation. Journal of Theoretical Biology, 193(1):39–45. [doi:10.1006/jtbi.1998.0678]CrossRefGoogle Scholar
  36. Tang, C.Y., Tan, K.H., 2004. An interactive mechanical model for shear strength of deep beams. Journal of Structural Engineering ASCE, 130(10):1534–1544. [doi:10.1061/(ASCE)0733-9445(2004)130:10(1534)]CrossRefGoogle Scholar
  37. Wootton, R.J., 1990. The mechanical design of insect wings. Scientific American, 263(5):114–120.CrossRefGoogle Scholar
  38. Wootton, R.J., Kukalová-Peck, J., Newman, D.J.S., Muzón, J., 1998. Smart engineering in the Mid-Carboniferous: How well could Palaeozoic dragonflies fly? Science, 282(5389): 749–751. [doi:10.1126/science.282.5389.749]CrossRefGoogle Scholar
  39. Zeng, L.J., Matsumoto, H., Kawachi, K., 1996. Simultaneous measurement of the shape and thickness of a dragonfly wing. Measurement Science & Technology, 7(12):1728–1732. [doi:10.1088/0957-0233/7/12/006]CrossRefGoogle Scholar
  40. Zhang, G., 2007. Studies on New-style Spatial Cantilever Structures by Bionic Modeling of Dragonfly Wings. MS Thesis, Zhejiang University, Hangzhou, p.63–69 (in Chinese).Google Scholar
  41. Zhang, Q.L., Zhang, L., 2000. Three kinds of shape finding problems and their solutions for membrane structures. Journal of Building Structures, 21(5):33–40 (in Chinese).Google Scholar
  42. Zhang, Q.L., Chen, L.X., Luo, X.Q., Yang, Z.L., 2007. Equivalent transform from the force-densities of cable nets to the stresses of membrane elements. Structural Engineering and Mechanics, 26(4):479–482.CrossRefGoogle Scholar
  43. Zhang, Y.X., Cheung, Y.K., 2003. A refined non-linear non-conforming triangular plate/shell element. International Journal for Numerical Methods in Engineering, 56(15):2387–2408. [doi:10.1002/nme.667]CrossRefMATHGoogle Scholar
  44. Zhang, Y.X., Kim, K.S., 2005. Linear and geometrically nonlinear analysis of plates and shells by a new refined non-conforming triangular plate/shell element. Computational Mechanics, 36(5):331–342. [doi:10.1007/s00466-004-0625-6]MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Zhong-xue Li
    • 1
  • Wei Shen
    • 1
  • Gen-shu Tong
    • 1
  • Jia-meng Tian
    • 1
  • Loc Vu-Quoc
    • 2
  1. 1.Institute of Structural EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations