Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 4, pp 601–606 | Cite as

Analysis on spectral gain characteristics of PPMgLN based quasi-phase-matching optical parametric amplification

  • Hai-bin Xu
  • Bo Wu
  • Shuang-shuang Cai
  • Yong-hang Shen


A deep understanding of the spectral gain characteristics of optical parametric oscillators (OPOs) and optical parametric amplifiers (OPAs) is important for a highly efficient optical parametric conversion. We numerically calculated the spectral gain characteristics of a quasi-phase-matching (QPM) parametric conversion process using the periodically poled 6% (mol/mol) MgO doped LiNbO3 (PPMgLN) as the nonlinear crystal. In the simulation we utilized the approach of a transformative matrix of the periodically poled nonlinear medium, which results from the small-signal approximation of three-wave mixed nonlinear equations. Numerical simulation results show that: (1) The full width at half maximum (FWHM) of the spectral gain of the parametric process becomes wider with the increase of parametric wavelength and reaches the maximum at degeneration; (2) The gain coefficient decreases gradually with the increase of parametric wavelength; (3) The spectral gain bandwidth decreases correspondingly with the increase of the nonlinear material length; (4) There exists an optimal parametric wavelength band, which is most suitable for the high gain parametric conversion when pumped by a laser source with a wide wavelength band, such as the high power fiber laser.

Key words

Spectral gain full width at half maximum (FWHM) Quasi-phase matching (QPM) Optical parametric conversion PPMgLN 

CLC number

O437.4 TN201 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, J.A., Bloemergen, N., Ducuing, J., Pershan, P.S., 1962. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127(6):1918–1939. [doi:10.1103/PhysRev.127.1918]CrossRefGoogle Scholar
  2. Bryan, D.A., Gerson, R., Tomaschke, H.E., 1984. Increased optical damage resistance in lithium niobate. Appl. Phys. Lett., 44(9):847–849. [doi:10.1063/1.94946]CrossRefGoogle Scholar
  3. Chen, W., Mouret, G., Boucher, D., Tittel, F.K., 2001. Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4. Appl. Phys. B: Lasers Opt., 72:873–876. [doi:10.1007/s003400100561]CrossRefGoogle Scholar
  4. Feng, J., Yao, J.Q., Zheng, F.H., Li, E.B., Zhang, T.L., Zhao, P., Wang, P., Zhang, B.G., 2007. High-repetition-rate dual-signal intracavity optical parametric generator based on periodically-phase-reversal PPMgLN. J. Opt. A: Pure Appl. Opt., 9(10):797–801. [doi:10.1088/1464-4258/9/10/004]CrossRefGoogle Scholar
  5. Huang, L., Hui, D., Bamford, D.J., Field, S.J., Mnushkina, I., Myers, L.E., Kayser, J.V., 2001. Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method. Appl. Phys. B: Lasers Opt., 72:301–306. [doi:10.1007/s003400100493]CrossRefGoogle Scholar
  6. Ishizuki, H., Shoji, I., Taira, T., 2003a. Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature. Appl. Phys. Lett., 82(23):4062–4064. [doi:10.1063/1.1582371]CrossRefGoogle Scholar
  7. Ishizuki, H., Taira, T., Kurimura, S., Hoonro, J., Cha, M., 2003b. Periodic poling in 3-mm-thick MgO:LiNbO3 crystals. Jpn. J. Appl. Phys., 42(part 2):L108–L110. [doi:10.1143/JJAP.42.L108]CrossRefGoogle Scholar
  8. Jiang, J., Hasama, T., 2003. Synchronously pumped femtosecond optical parametric oscillator based on an improved pumping concept. Opt. Commun., 220(1–3):193–202. [doi:10.1016/S0030-4018(03)01342-7]CrossRefGoogle Scholar
  9. Kulp, T.J., Bisson, S.E., Bambha, P., Reichardt, T.A., Goers, U.B., Aniolek, K.W., Kliner, D.A.V., Richman, B.A., Armstrong, K.M., Sommers, R., et al., 2002. The application of quasi-phase-matched parametric light sources to practical infrared chemical sensing systems. Appl. Phys. B: Lasers Opt., 75(2–3):317–327. [doi:10.1007/s00340-002-0978-5]CrossRefGoogle Scholar
  10. Kuroda, A., Kurimura, S., Uesu, Y., 1996. Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields. Appl. Phys. Lett., 69(11):1565–1567. [doi:10.1063/1.117031]CrossRefGoogle Scholar
  11. McMullen, J.D., 1975. Optical parametric interactions in isotropic materials using a phase-corrected stack of nonlinear dielectric plates. J. Appl. Phys., 46(7):3076–3081. [doi:10.1063/1.322001]CrossRefGoogle Scholar
  12. Milton, M.J.T., 1992. General expressions for the efficiency of phase-matched and nonphase-matched second-order nonlinear interactions between plane waves. IEEE J. Quant. Electron., 28(3):739–749. [doi:10.1109/3.124999]CrossRefGoogle Scholar
  13. Popp, A., Müller, F., Kühnemann, F., Schiller, S., von Basum, G., Dahnke, H., Hering, P., Mürtz, M., 2002. Ultrasensitive mid-infrared cavity leak-out spectroscopy using a cw optical parametric oscillator. Appl. Phys. B: Lasers Opt., 75(6–7):751–754. [doi:10.1007/s00340-002-1047-9]CrossRefGoogle Scholar
  14. Stothard, D.J.M., Dunn, M.H., Rae, C.F., 2004. Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator. Opt. Expr., 12(5):947–955. [doi:10.1364/OPEX.12.000947]CrossRefGoogle Scholar
  15. Wu, B., Shen, Y.H., Cai, S.S., 2007. Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal. Opt. Laser Technol., 39(6):1115–1119. [doi:10.1016/j.optlastec.2006.09.012]CrossRefGoogle Scholar
  16. Xie, X.P., Fejer, M.M., 2007. Cascaded optical parametric generation in reverse-proton-exchange lithium niobate waveguides. J. Opt. Soc. Am. B, 24(3):585–591. [doi:10.1364/JOSAB.24.000585]CrossRefGoogle Scholar
  17. Zhu, Y.M., Chen, X.F., Shi, J.H., Chen, Y.P., Xia, Y.X., Chen, Y.L., 2003. Wide-range tunable wavelength filter in periodically poled lithium niobate. Opt. Commun., 228(1–3):139–143. [doi:10.1016/j.optcom.2003.09.081]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Hai-bin Xu
    • 1
  • Bo Wu
    • 1
  • Shuang-shuang Cai
    • 1
  • Yong-hang Shen
    • 1
  1. 1.State Key Laboratory of Modern Optical InstrumentationZhejiang UniversityHangzhouChina

Personalised recommendations