Skip to main content
Log in

Automatic segmentation of bladder in CT images

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Segmentation of the bladder in computerized tomography (CT) images is an important step in radiation therapy planning of prostate cancer. We present a new segmentation scheme to automatically delineate the bladder contour in CT images with three major steps. First, we use the mean shift algorithm to obtain a clustered image containing the rough contour of the bladder, which is then extracted in the second step by applying a region-growing algorithm with the initial seed point selected from a line-by-line scanning process. The third step is to refine the bladder contour more accurately using the rolling-ball algorithm. These steps are then extended to segment the bladder volume in a slice-by-slice manner. The obtained results were compared to manual segmentation by radiation oncologists. The average values of sensitivity, specificity, positive predictive value, negative predictive value, and Hausdorff distance are 86.5%, 96.3%, 90.5%, 96.5%, and 2.8 pixels, respectively. The results show that the bladder can be accurately segmented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Armato, S.G.III, Giger, M.L., Moran, C.J., Blackburn, J.T., Doi, K., MacMahon H., 1999. Computerized detection of pulmonary nodules on CT scans. RadioGraphics, 19:1303–1311.

    Article  Google Scholar 

  • Bueno, G., Martínez-Albalá, A., Adan, A., 2004. Fuzzy-snake Segmentation of Anatomical Structures Applied to CT Images. Int. Conf. on Image Analysis and Recognition, 2:33–42.

    Article  Google Scholar 

  • Camapum, J.F., Silva, A.O., Freitas, A.N., Bassani, H.F., Freitas, F.M.O., 2004. Segmentation of Clinical Structures from Images of the Human Pelvic Area. Proc. 17th Brazilian Symp. on Computer Graphics and Image Processing, p.10–16. [doi:10.1109/SIBGRA.2004.1352937]

  • Cheng, Y., 1995. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell., 17(8):790–799. [doi:10.1109/34.400568]

    Article  Google Scholar 

  • Comaniciu, D., Meer, P., 2002. Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619. [doi:10.1109/34.1000236]

    Article  Google Scholar 

  • Costa, M.J., Delingette, H., Novellas, S., Ayache, N., 2007. Automatic Segmentation of Bladder and Prostate Using Coupled 3D Deformable Models. 10th Int. Conf. on Medical Image Computing and Computer-assisted Intervention, p.252–260.

  • Freedman, D., Zhang, T., 2005. Interactive Graph Cut Based Segmentation with Shape Priors. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1:755–762.

    Google Scholar 

  • Fukunaga, K., Hostetler, L., 1975. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory, 21(1):32–40. [doi:10.1109/TIT.1975.1055330]

    Article  MathSciNet  MATH  Google Scholar 

  • Georgescu, B., Shimshoni, I., Meer, P., 2003. Mean Shift Based Clustering in High Dimensions: A Texture Classification Example. Proc. Ninth IEEE Int. Conf. on Computer Vision, 1:456–463. [doi:10.1109/ICCV.2003.1238382]

    Article  Google Scholar 

  • Haas, B., Coradi, T., Scholz, M., Kunz, P., Huber, M., Oppitz, U., Andre, L., Lengkeek, V., Huyskens, D., van Esch, A., et al., 2008. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Phys. Med. Biol., 53(6):1751–1771. [doi:10.1088/0031-9155/53/6/017]

    Article  Google Scholar 

  • Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J., 1993. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell., 15(9):850–863. [doi:10.1109/34.232073]

    Article  Google Scholar 

  • Jimenez, J.R., Medina, V., Yanez, O., 2003. Nonparametric MRI Segmentation Using Mean Shift and Edge Confidence Maps. Proc. SPIE, 5032:1433–1441. [doi:10.1117/12.480121]

    Article  Google Scholar 

  • Lee, C.C., Chung, P.C., 2004. Identifying Abdominal Organs Using Robust Fuzzy Inference Model. IEEE Int. Conf. on Networking, Sensing and Control, 2:1289–1294. [doi:10.1109/ICNSC.2004.1297133]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Additional information

Project (No. 60675023) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, F., Yang, J. & Zhu, Ym. Automatic segmentation of bladder in CT images. J. Zhejiang Univ. Sci. A 10, 239–246 (2009). https://doi.org/10.1631/jzus.A0820157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820157

Key words

CLC number

Navigation