Journal of Zhejiang University-SCIENCE A

, Volume 9, Issue 7, pp 1004–1010 | Cite as

Performance of biological phosphorus removal and characteristics of microbial community in the oxic-settling-anaerobic process by FISH analysis

  • Jian-fang Wang
  • Qing-liang Zhao
  • Wen-biao Jin
  • Shi-jie You
  • Jin-na Zhang


Performance of biological phosphorus removal in the oxic-settling-anaerobic (OSA) process was investigated. Cell staining and fluorescent in situ hybridization (FISH) were used to analyze characteristics and microbial community of sludge. Experimental results showed that phosphorus removal efficiency was near 60% and the amount of biological phosphorus accumulation in aerobic sludge of the OSA system was up to 26.9 mg/g. Biological phosphorus removal efficiency was partially inhibited by carbon sources in the continuous OSA system. Contrasted to the OSA system, biological phosphorus removal efficiency was enhanced by 14% and the average total phosphorus (TP) contents of aerobic sludge were increased by 0.36 mg/g when sufficient carbon sources were supplied in batch experiments. Staining methods indicated that about 35% of microorganisms had typical characteristics of phosphorus accumulating organisms (PAOs). FISH analysis demonstrated that PAOMIX-binding bacteria were predominant microbial communities in the OSA system, which accounted for around 28% of total bacteria.


Excess sludge reduction Biological phosphorus removal Phosphate accumulating organisms (PAOs) DAPI (4′,6′-diamidino-2-phenyl indol dihydrochloride) Fluorescent in situ hybridization (FISH) 

CLC number

X703.1 DQ89 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA (American Public Health Association/American Water Works Association/Water Environment Federation), 1995. Standard Methods for the Examination of Water and Wastewater. Washington, DC, USA.Google Scholar
  2. Bond, P.L., Erhart, R., Wagner, M., Keller, J., Blackall, L.L., 1999. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl. Environ. Microbiol., 65(9):4077–4084.Google Scholar
  3. Chen, G.H., An, K.J., Saby, S., Brois, E., Djafer, M., 2003. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process). Water Res., 37(16):3855–3866. [doi:10.1016/S0043-1354(03)00331-2]CrossRefGoogle Scholar
  4. Chudoba, P., Chang, J., Capedeville, B., 1991. Synchronized division of activated sludge microorganisms. Water Res., 25(7):817–822. [doi:10.1016/0043-1354(91)90161-I]CrossRefGoogle Scholar
  5. Chudoba, P., Chudoba, J., Capdeville, B., 1992. The aspect of energetic uncoupling of microbial growth in the activated sludge process: OSA system. Water Sci. Technol., 26:2477–2480.CrossRefGoogle Scholar
  6. Crocetti, G.R., Hugenholtz, P., Bond, P.L., Schuler, A., Keller, J., Jenkins, D., Blackall, L.L., 2000. Identification of polyphosphate accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol., 66(3):1175–1182. [doi:10.1128/AEM.66.3.1175-1182.2000]CrossRefGoogle Scholar
  7. Kong, Y., Nielsen, J.L., Nielsen, P.H., 2005. Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl. Environ. Microbiol., 71(7):4076–4085. [doi:10.1128/AEM.71.7.4076-4085.2005]CrossRefGoogle Scholar
  8. Lee, D.S., Jeon, C.O., Park, J.M., 2001. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Res., 35(16):3968–3976. [doi:10.1016/S0043-1354(01)00132-4]CrossRefGoogle Scholar
  9. Liu, Y., Lin, Y.M., Tay, J.H., 2005a. The elemental compositions of P-accumulating microbial granules developed in sequencing batch reactors. Process Biochem., 40(10): 3258–3262. [doi:10.1016/j.procbio.2005.03.002]CrossRefGoogle Scholar
  10. Liu, Y., Zhang, T., Fang, H.H.P., 2005b. Microbial community analysis and performance of a phosphate-removing activated sludge. Bioresour. Technol., 96(11):1205–1214. [doi:10.1016/j.biortech.2004.11.003]CrossRefGoogle Scholar
  11. Murray, R.G.E., Doetsch, R.N., Robinow, C.F., 1994. Determinative and Cytological Light Microscopy. In: Gehardt, P., Murray, R.G.E., Wood, W.A., Krieg, N.R. (Eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology. Washington, DC, p.21–41.Google Scholar
  12. Pijuan, M., Guisasola, A., Baeza, J.A., Carrera, J., Casas, C., Lafuente, J., 2006. Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions. J. Biotechnol., 123(1):117–126. [doi:10.1016/j.jbiotec.2005.10.018]CrossRefGoogle Scholar
  13. Saby, S., Djafer, M., Chen, G.H., 2003. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Water Res., 37(1):11–20. [doi:10.1016/S0043-1354(02)00253-1]CrossRefGoogle Scholar
  14. Sanz, J.L., Köchling, T., 2007. Molecular biology techniques used in wastewater treatment: an overview. Process Biochem., 42(2):119–133. [doi:10.1016/j.procbio.2006.10/003]CrossRefGoogle Scholar
  15. Serafim, L.S., Lemos, P.C., Levantesi, C., Tandoi, V., Santos, H., Reis, M.A.M., 2002. Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J. Microbiol. Methods, 51(1):1–18. [doi:10.1016/S0167-7012(02)-00056-8]CrossRefGoogle Scholar
  16. Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2003. Wastewater Engineering Treatment and Reuse. Tsinghua University Publishing House, Beijing, p.565, 805–806.Google Scholar
  17. Tsuneda, S., Ohno, T., Soejima, K., Hirata, A., 2006. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem. Eng. J., 27(3):191–196. [doi:10.1016/j.bej.2005.07.004]CrossRefGoogle Scholar
  18. Wang, J.F., Jin, W.B., Zhao, Q.L., Liu, Z.G., Lin, J.K., 2007. Performance of treating wastewater and anti-impact in oxic-settling-anoxic (OSA) process for minimization of excess sludge. Environ. Sci., 28(11):2488–2493 (in Chinese).Google Scholar
  19. Wei, Y.S., van Houten, R.T., Borger, A.R., Eikelboom, D.H., Fan, Y.B., 2003. Minimization of excess sludge production for biological wastewater treatment. Water Res., 37(18):4453–4467. [doi:10.1016/S0043-1354(03)-00441-X]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Jian-fang Wang
    • 1
  • Qing-liang Zhao
    • 1
  • Wen-biao Jin
    • 2
  • Shi-jie You
    • 1
  • Jin-na Zhang
    • 1
  1. 1.School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Urban and Civil EngineeringHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations