Skip to main content
Log in

Experimental study on the spatial distribution of particle rotation in the upper dilute zone of a cold CFB riser

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold circulating fluidized bed (CFB) riser. It is shown that in the horizontal direction, the average rotation speed in the near-wall area is larger than that in the center area, while in the vertical direction, it decreases as the height increases. The reason resulting in this distribution is analyzed by considering several factors including particle size, particle shape, particle number density, particle collision behavior, and the surrounding flow field, etc. The effects of CFB operation conditions on the spatial distribution of average rotation speed are also studied. The results show that the increasing superficial gas velocity increases the average rotation speed of particles in the near wall area but takes nearly no effect on that in the center area. The external solids mass flux, however, takes the opposite effect. It is found that the average rotation speeds of particles in both areas are increased as the total amount of bed material increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alipchenkov, V.M., Zaichik, L.I., 2001. Particle collision rate in turbulent flow. Fluid Dynamics, 36(4):608–618. [doi:10.1023/A:1012345714538]

    Article  MathSciNet  MATH  Google Scholar 

  • Cen, K.F., Fan, J.R., 1990. Theory and Calculation of Engineering Gas-solid Multiphase Flow. Zhejiang University Press, Hangzhou, p.105–220 (in Chinese).

    Google Scholar 

  • Damaschke, N., Nobach, H., Tropea, C., 2002. Optical limits of particle concentration for multi-dimensional particle sizing techniques in fluid mechanics. Experiments in Fluids, 32(2):143–152. [doi:10.1007/s00348-001-0371-x]

    Article  Google Scholar 

  • Dong, Z., Liu, X., Wang, X., Li, F., Zhao, A., 2004. Experimental investigation of the velocity of a sand cloud blowing over a sandy surface. Earth Surface Processes and Landforms, 29(3):343–358. [doi:10.1002/esp.1030]

    Article  Google Scholar 

  • Fan, R., Fox, R.O., 2008. Segregation in polydisperse fluidized beds: validation of a multi-fluid model. Chemical Engineering Science, 63(1):272–285. [doi:10.1016/j.ces.2007.09.038]

    Article  Google Scholar 

  • Goldschmidt, M.J.V., Link, J.M., Mellema, S., Kuipers, J.A.M., 2003. Digital image analysis measurements of bed expansion and segregation dynamics in dense gas-fluidised beds. Powder Technology, 138(2–3):135–159. [doi:10.1016/j.powtec.2003.09.003]

    Article  Google Scholar 

  • Goldschmidt, M.J.V., Beetstra, R., Kuipers, J.A.M., 2004. Hydrodynamic modelling of dense gas-fluidised beds: comparison and validation of 3D discrete particle and continuum models. Powder Technology, 142(1):23–47. [doi:10.1016/j.powtec.2004.02.020]

    Article  Google Scholar 

  • Gui, N., Fan, J., Luo, K., 2007. Experimental study on collision rates of inertial particles in particulate flows under the effect of gravity. Chemical Engineering Science, 62(22):6112–6120. [doi:10.1016/j.ces.2007.06.034]

    Article  Google Scholar 

  • Helland, E., Bournot, H., Occelli, R., Tadrist, L., 2007. Drag reduction and cluster formation in a circulating fluidised bed. Chemical Engineering Science, 62(1–2):148–158. [doi:10.1016/j.ces.2006.08.012]

    Article  Google Scholar 

  • Hui, Y., Hu, E., 1991. Saltation characteristics of particle motions in water. Shuili Xuebao, 12:59–64 (in Chinese).

    Google Scholar 

  • Hussainov, M., Kartushinsky, A., Mulgi, A., Rudi, U., 1996. Gas-solid flow with the slip velocity of particles in a horizontal channel. Journal of Aerosol Science, 27(1):41–59. [doi:10.1016/0021-8502(95)00052-6]

    Article  Google Scholar 

  • Hyre, M.R., Glicksman, L.R., 2000. Axial and lateral solids distribution modeling in the upper region of circulating fluidized beds. Powder Technology, 110(1–2):98–109. [doi:10.1016/S0032-5910(99)00272-7]

    Article  Google Scholar 

  • Kadambi, J.R., Martin, W.T., Amirthaganesh, S., Wernet, M.P., 1998. Particle sizing using particle imaging velocimetry for two-phase flows. Powder Technology, 100(2–3):251–259. [doi:10.1016/S0032-5910(98)00146-6]

    Article  Google Scholar 

  • Kajishima, T., 2004. Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence. International Journal of Heat and Fluid Flow, 25(5):721–728. [doi:10.1016/j.ijheatfluidflow.2004.05.007]

    Article  Google Scholar 

  • Kale, S.R., Ramezan, M., Anderson, R.J., 1989. Measurement of particle rotational velocity using a Laser Anemometer. Particle and Particle Systems Characterization, 6(1–4): 59–63. [doi:10.1002/ppsc.19890060109]

    Article  Google Scholar 

  • Lee, H.Y., Hsu, I.S., 1996. Particle spinning motion during saltating process. Journal of Hydraulic Engineering, 122(10):587–590. [doi:10.1061/(ASCE)0733-9429(1996)122:10(587)]

    Article  Google Scholar 

  • Liu, C., Guo, Y., 2006. Mechanisms for particle clustering in upward gas-solid flows. Chinese Journal of Chemical Engineering, 14(2):141–148.

    Article  Google Scholar 

  • Liu, H.X., 1965. Discussion on Movement Regularity of Solid Fuel in a Cyclone Furnace. M.S. Thesis, Zhejiang University, Hangzhou, p.25–34 (in Chinese).

    Google Scholar 

  • Liu, M., Zhang, H.Q., Chan, C.K., Lau, K.S., Lin, W.Y., 2006. Study of cluster formation in dense two-phase flow using a multi-lattice deterministic model. Powder Technology, 162(3):175–182. [doi:10.1016/j.powtec.2005.12.006]

    Article  Google Scholar 

  • Luo, Z.Y., Wu, X.C., Wang, Q.H., Gao, Q., Fang, M.X., Cen, K.F., 2005. Particle rotation characteristics in CFB riser. Journal of Chemical Industry and Engineering (China), 56(10):1869–1874 (in Chinese).

    Google Scholar 

  • Meyer, J., Umhauer, H., Reuter, K., Schiel, A., Kasper, G., Forster, M., 2008. Concentration and size measurements of fly ash particles from the clean gas side of a pressurised pulverised coal combustion test facility. Powder Technology, 180(1–2):57–63. [doi:10.1016/j.powtec.2007.04.008]

    Article  Google Scholar 

  • Moran, J.C., Glicksman, L.R., 2003. Mean and fluctuating gas phase velocities inside a circulating fluidized bed. Chemical Engineering Science, 58(9):1867–1878.

    Article  Google Scholar 

  • Shi, H.X., 2003. PIV measurement and Numerical Simulation of the Hydrodynamics of Gas-solid in a CFB Riser. Ph.D Thesis, Zhejiang University, Hangzhou, p.122–129 (in Chinese).

    Google Scholar 

  • Sun, J., Battaglia, F., 2006. Hydrodynamic modeling of particle rotation for segregation in bubbling gas-fluidized beds. Chemical Engineering Science, 61(5):1470–1479. [doi:10.1016/j.ces.2005.09.003]

    Article  Google Scholar 

  • Tsuji, Y., Morkawa, Y., Mizumo, O., 1985. Experimental measurement of he Magnus force on a rotating sphere at low Reynolds numbers. Journal Fluid Engineering, 107:484–488.

    Article  Google Scholar 

  • Volkov, A.N., Tsirkunov, Y.M., Oesterle, B., 2005. Numerical simulation of a supersonic gas-solid flow over a blunt body: the role of inter-particle collisions and two-way coupling effects. International Journal of Multiphase Flow, 31(12):1244–1275. [doi:10.1016/j.ijmultiphaseflow.2005.07.002]

    Article  MATH  Google Scholar 

  • Wang, S., Liu, H., Lu, H., Liu, W., Ding, J., Li, W., 2005. Flow behavior of clusters in a riser simulated by direct simulation Monte Carlo method. Chemical Engineering Journal, 106(3):197–211. [doi:10.1016/j.cej.2004.12.036]

    Article  Google Scholar 

  • White, B.R., 1982. Two-phase measurements of saltating turbulent boundary layer flow. International Journal of Multiphase Flow, 8(5):459–473.

    Article  Google Scholar 

  • White, B.R., Schulz, J.C., 1977. Magnus effect in saltation. Journal Fluid Mechanics, 81(3):497–512.

    Article  Google Scholar 

  • Wu, X.C., 2007. Study of Laser-based Measurement Techniques for Particle Motion Characteristics in Multi-phase Flows. Ph.D Thesis, Zhejiang University, Hangzhou, p.41–78 (in Chinese).

    Google Scholar 

  • Wu, X.C., Wang, Q.H., Luo, Z.Y., Fang, M.X., Cen, K.F., 2008a. Experimental study of particle rotation characteristics with high-speed digital imaging system. Powder Technology, 181(1):21–30. [doi:10.1016/j.powtec.2007.04.007]

    Article  Google Scholar 

  • Wu, X.C., Wang, Q.H., Luo, Z.Y., Fang, M.X., Cen, K.F., 2008b. Study of Particle rotation speed measurement method based on cross-correlation of gray distribution. Proceedings of the CSEE, 28(8):71–76. (in Chinese).

    Google Scholar 

  • You, C., Zhao, H., Cai, Y., Qi, H., Xu, X., 2004. Experimental investigation of interparticle collision rate in particulate flow. International Journal of Multiphase Flow, 30(9):1121–1138. [doi:10.1016/j.ijmultiphaseflow.2004.05.009]

    Article  MATH  Google Scholar 

  • Yuan, Z.L., Ma, M., Xu, Y.Q., 2001. Study on effect of particle rotation on fluidizing behavior using discrete numerical simulation method. Journal Combustion Science and Technology, 7(3):238–241 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-hui Wang.

Additional information

Project supported by the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAA03B01), and the China Postdoctoral Science Foundation (No. 20070421165)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Xc., Wang, Qh., Tian, C. et al. Experimental study on the spatial distribution of particle rotation in the upper dilute zone of a cold CFB riser. J. Zhejiang Univ. Sci. A 9, 922–931 (2008). https://doi.org/10.1631/jzus.A0820034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820034

Key words

CLC number

Navigation