Journal of Zhejiang University-SCIENCE A

, Volume 9, Issue 1, pp 65–78 | Cite as

Eccentricity and thermoviscous effects on ultrasonic scattering from a liquid-coated fluid cylinder

  • Seyyed M. Hasheminejad
  • M. A. Alibakhshi


Calculation of the scattered field of the eccentric scatterers is an old problem with numerous applications. This study considers the interaction of a plane compressional sound wave with a liquid-encapsulated thermoviscous fluid cylinder submerged in an unbounded viscous thermally conducting medium. The translational addition theorem for cylindrical wave functions, the appropriate wave field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which the compound cylinder is insonified by a plane sound wave at selected angles of incidence in a wide range of dimensionless frequencies. The backscattered far-field acoustic pressure amplitude and the spatial distribution of the total acoustic pressure in the vicinity of the cylinder are evaluated and discussed for representative values of the parameters characterizing the system. The effects of incident wave frequency, angle of incidence, fluid thermoviscosity, core eccentricity and size are thoroughly examined. Limiting case involving an ideal compressible liquid-coated cylinder is considered and fair agreement with a well-known solution is established.

Key words

Thremoviscous effects Eccentric fluid cylinder Acoustic scattering 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., Stegun, I.A., 1965. Handbook of Mathematical Functions. National Bureau of Standards. Washington, DC.MATHGoogle Scholar
  2. Alemar, J.D., Delsanto, P.P., Rosario, E., Nagel, A., Uberal, H., 1986a. Spectral analysis of the scattering of acoustic waves from a fluid cylinder, I: Denser fluid loading. Acustica, 61:1–6.MATHGoogle Scholar
  3. Alemar, J.D., Delsanto, P.P., Rosario, E., Nagel, A., Uberal, H., 1986b. Spectral analysis of the scattering of acoustic waves from a fluid cylinder, II: Denser fluid inside. Acustica, 61:7–13.MATHGoogle Scholar
  4. Babick, F., Hinze, F., Ripperger, S., 2000. Dependence of ultrasonic attenuation on the material properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172(1–3):33–46. [doi:10.1016/S0927-7757(00)00571-9]CrossRefGoogle Scholar
  5. Bailey, D.H., 1995. A FORTRAN-90 based multiprecision system. ACM Trans. Math. Soft., 21(4):379–387. [doi:10.1145/212066.212075]MATHCrossRefGoogle Scholar
  6. Boag, A., Levitan, Y., Boag, A., 1988. Analysis of acoustic scattering from fluid cylinders using a multifilament source model. J. Acoust. Soc. Am., 83(1):1–8. [doi:10.1121/1.396422]CrossRefGoogle Scholar
  7. Cai, L.W., 2004. Multiple scattering in single scatterers. J. Acoust. Soc. Am., 115(3):986–995. [doi:10.1121/1.1643362]CrossRefGoogle Scholar
  8. Chandra, K., Thompson, C., 1992. Improved perturbation method for scattering from a fluid cylinder. J. Acoust. Soc. Am., 92(2):1047–1055. [doi:10.1121/1.404034]CrossRefGoogle Scholar
  9. Chung, S.K., Trinh, E.H., 1998. Containerless protein crystal growth in rotating levitated drops. J. Cryst. Growth, 194(3–4):384–397. [doi:10.1016/S0022-0248(98)00542-9]CrossRefGoogle Scholar
  10. Danila, E.B., Conoir, J.M., Izbicki, J.L., 1995. Generalized Debye series expansion: Treatment of the concentric and nonconcentric cylindrical fluid-fluid interfaces. J. Acoust. Soc. Am., 98(6):3326–3342. [doi:10.1121/1.413820]CrossRefGoogle Scholar
  11. Danila, E.B., Conoir, J.M., Izbicki, J.L., 1998. Generalized Debye series expansion. Part II, Treatment of eccentric fluid-solid cylindrical interfaces. Acta Acustica, 84:38–44.Google Scholar
  12. Doi, T., Koster, J.N., 1993. Thermocapillary convection in two immiscible liquid layers with free surface. Phys. Fluids A, 5(8):1914–1927.MATHCrossRefGoogle Scholar
  13. Dongarra, J., Bunch, J., Moler, C., Stewart, G.W., 1979. LINPACK User’s Guide. SIAM.Google Scholar
  14. Eyer, A., Leiste, H., 1985. Striation-free silicon crystal by float-zoning with surface coated melt. J. Cryst. Growth, 71(1):249–252. [doi:10.1016/0022-0248(85)90073-9]CrossRefGoogle Scholar
  15. Faran, J.J., 1951. Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am., 23(4):405–418. [doi:10.1121/1.1906780]MathSciNetCrossRefGoogle Scholar
  16. Gao, J.R., Wei, B.B., 1999. Containerless solidification of undercooled NdFeZrB alloy droplets in a drop tube. J. Alloys Compd., 285(1–2):229–232. [doi:10.1016/S0925-8388(98)00870-6]CrossRefGoogle Scholar
  17. Hasegawa, T., Yasutaka, H., Akio, H.A., Hideki, N., Massahiko, K., 1993. Acoustic radiation pressure acting on spherical and cylindrical shells. J. Acoust. Soc. Am., 93(1):154–160. [doi:10.1121/1.405653]CrossRefGoogle Scholar
  18. Hasheminejad, M., Geers, T.L., 1993. Modal impedance for two spheres in a thermoviscous fluid. J. Acoust. Soc. Am., 94(4):2205–2214. [doi:10.1121/1.407491]CrossRefGoogle Scholar
  19. Hasheminejad, M., Azarpeyvand, M., 2003. Energy distribution and radiation loading of a cylindrical source suspended within a nonconcentric fluid cylinder. Acta Mechanica, 164(1–2):15–30. [doi:10.1007/s00707-003-0014-9]MATHCrossRefGoogle Scholar
  20. Hasheminejad, M., Badsar, A., 2004. Acoustic scattering by a pair of poroelastic spheres. Quart. J. Mech. Appl. Math., 57(1):95–113. [doi:10.1093/qjmam/57.1.95]MathSciNetMATHCrossRefGoogle Scholar
  21. Janele, P.J., Mioduchowski, A., Haddow, J.B., 1991. A note on finite dynamic deformation of concentric cylinders. Int. J. Eng. Sci., 29(12):1585–1592. [doi:10.1016/0020-7225(91)90128-P]CrossRefGoogle Scholar
  22. Johnson, D.T., 2002. Viscous effects in liquid encapsulated liquid bridges. Int. J. Heat Fluid Flow, 23(6):844–854. [doi:10.1016/S0142-727X(02)00186-8]CrossRefGoogle Scholar
  23. Kanevskii, I.N., Surikov, B.S., 1976. Two-layer acoustic lenses. Acoustics, 22:292–294.Google Scholar
  24. Lamb, H., 1945. Hydrodynamics. Dover.Google Scholar
  25. Lane, M., Forest, K.T., Lyons, E.A., Bavister, B.D., 1999. Live births following vitrification of hamster embryos using a novel containerless technique. Theriogenology, 51(1):167. [doi:10.1016/S0093-691X(99)91726-0]CrossRefGoogle Scholar
  26. Li, M.W., Zeng, D.L., Zhu, T.X., 2002. Instability of the Marangoni convection in a liquid bridge with liquid encapsulation under microgravity condition. Int. J. Heat Mass Transfer, 45(1):157–164. [doi:10.1016/S0017-9310(01)00125-9]MATHCrossRefGoogle Scholar
  27. Li, Y.R., Liu, Y.J., Peng, L., Wang, Y., 2006. Three-dimensional oscillatory thermocapillary flow in encapsulated liquid bridge. Phys. Fluids, 18(7):074108-1–074108-6. [doi:10.1063/1.2227051]Google Scholar
  28. Lin, W.H., Raptis, A.C., 1983. Acoustic scattering by elastic solid cylinders and spheres in viscous fluids. J. Acoust. Soc. Am., 73(3):736–748. [doi:10.1121/1.389039]MATHCrossRefGoogle Scholar
  29. Lorber, B., Giege, R., 1996. Containerless protein crystallization in floating drops—Application to crystal-growth monitoring under reduced nucleation conditions. J. Cryst. Growth, 168(1–4):204–215. [doi:10.1016/0022-0248(96)00356-9]CrossRefGoogle Scholar
  30. Mai, J., Yamane, R., Früh, W.G., Oshima, S., Ando, A., 2002. Unstable waves at the interface of a diamagnetic liquid column contained in a magnetic fluid. European Journal of Mechanics-B/Fluids, 21(2):237–246. [doi:10.1016/S0997-7546(01)01168-2]MATHCrossRefGoogle Scholar
  31. Marr-Lyon, M.J., Thiessen, D.B., Marston, P.L., 1997. Stabilization of a cylindrical capillary bridge far beyond the Rayleigh-Plateau limit using acoustic radiation pressure and active feedback. J. Fluid Mech., 351:345–357. [doi:10.1017/S002211209700726X]CrossRefGoogle Scholar
  32. Marr-Lyon, M.J., Thiessen, D.B., Blonigen, F.J., Marston, P.L., 2000. Stabilization of electrically conducting capillary bridges using feedback control of radial electrostatic stresses and the shapes of extended bridges. Phys. Fluids, 12(5):986–995. [doi:10.1063/1.870354]MATHCrossRefGoogle Scholar
  33. Marr-Lyon, M.J., Thiessen, D.B., Marston, P.L., 2001. Passive stabilization of capillary bridges in air with acoustic radiation pressure. Phys. Rev. Lett., 86(11):2293–2296. [doi:10.1103/PhysRevLett.86.2293]CrossRefGoogle Scholar
  34. Montanero, J.M., 2003. Theoretical analysis of the vibration of axisymmetric liquid bridges of arbitrary shape. Theoret. Comput. Fluid Dynamics, 16(3):171–186. [doi:10.1007/s00162-002-0077-6]MathSciNetMATHCrossRefGoogle Scholar
  35. Montanero, J.M., Cabezas, G., Acero, J., Perales, J.M., 2002. Theoretical and experimental analysis of the equilibrium contours of liquid bridges of arbitrary shape. Phys. Fluids, 14(2):682–693. [doi:10.1063/1.1427922]MathSciNetMATHCrossRefGoogle Scholar
  36. Morse, P., Ingard, K., 1968. Theoretical Acoustics. McGraw-Hill.Google Scholar
  37. Morse, S.F., Feng, Z.W., Marston, P.L., 1995. High-frequency threshold processes for leaky waves on cylinders of variable thickness: Fluid shell case. J. Acoust. Soc. Am., 98(5):2928. [doi:10.1121/1.414135]CrossRefGoogle Scholar
  38. Moseler, M., Landman, U., 2000. Formation, stability, and breakup of nanojets. Science, 289(5482):1165–1169. [doi:10.1126/science.289.5482.1165]CrossRefGoogle Scholar
  39. Nagashio, K., Takamura, Y., Kuribayashi, K., Shiohara, Y., 1999. Microstructural control of NdBa3Cu3O7-delta superconducting oxide from highly undercooled melt by containerless processing. J. Cryst. Growth, 200(1–2):118–125. [doi:10.1016/S0022-0248(98)01258-5]CrossRefGoogle Scholar
  40. Perales, J.M., Meseguer, J., 1992. Theoretical and experimental study of the vibration of axisymmetric viscous liquid bridges. Phys. Fluids A, 4(6):1110–1130.CrossRefGoogle Scholar
  41. Rayleigh, L., 1945. Theory of Sound. Dover.Google Scholar
  42. Reese, J.M., Thompson, W., 1986. Acoustic diffraction by a variable thickness fluid layer. J. Acoust. Soc. Am., 80(6):1810–1815. [doi:10.1121/1.394295]CrossRefGoogle Scholar
  43. Rhim, W.K., Ohsaka, K., Paradis, P.F., Spjut, R.E., 1999. Noncontact technique for measuring surface-tension and viscosity of molten materials using high-temperature electrostatic levitation. Rev. Sci. Instrum., 70(6):2796–2801. [doi:10.1063/1.1149797]CrossRefGoogle Scholar
  44. Roumeliotis, J.A., Kakogiannos, B., 1995. Acoustic scattering from an infinite cylinder of small radius coated by a penetrable one. J. Acoust. Soc. Am., 97(4):2074–2081. [doi:10.1121/1.412000]CrossRefGoogle Scholar
  45. Roumeliotis, J.A., Ziotopoulos, A.P., Kokkorakis, G.C., 2001. Acoustic scattering by a circular cylinder parallel with another of small radius. J. Acoust. Soc. Am., 109(3):870–877. [doi:10.1121/1.1348296]CrossRefGoogle Scholar
  46. Rousselot, J.L., 1994. Field diffracted by a fluid cylinder: Comparison between the geometrical theory of diffraction and a model solution. Acustica, 80:14–20.MATHGoogle Scholar
  47. Sanz, A., 1985. The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid. Mech., 156:101–140. [doi:10.1017/S0022112085002014]MATHCrossRefGoogle Scholar
  48. Schuster, G.T., 1990. A fast exact numerical solution for the acoustic response of concentric cylinders with penetrable interfaces. J. Acoust. Soc. Am., 87(2):495–502. [doi:10.1121/1.398919]CrossRefGoogle Scholar
  49. Scotti, T., Wirgin, A., 2004. Reconstruction of the three mechanical material constants of a lossy fluid-like cylinder from low-frequency scattered acoustic fields. Comptes Rendus Mécanique, 332(9):717–724. [doi:10.1016/j.crme.2004.03.018]CrossRefGoogle Scholar
  50. Shaw, R.P., Tai, G., 1974. Time harmonic acoustic radiation from nonconcentric circular cylinder. J. Acoust. Soc. Am., 56(5):1437–1443. [doi:10.1121/1.1903462]MATHCrossRefGoogle Scholar
  51. Sinai, J., Waag, R.C., 1988. Ultrasonic scattering by two concentric cylinders. J. Acoust. Soc. Am., 83(5):1728–1735. [doi:10.1121/1.396505]CrossRefGoogle Scholar
  52. Stratton, J.A., 1941. Electromagnetic Theory. McGraw-Hill.Google Scholar
  53. Temkin, S., 1981. Elements of Acoustics. Wiley, New York.Google Scholar
  54. Thiessen, D.B., Marr-Lyon, M.J., Marston, P.L., 2002. Active electrostatic stabilization of liquid bridges in low gravity. J. Fluid Mech., 457:285–294. [doi:10.1017/S0022112002007760]MATHCrossRefGoogle Scholar
  55. Varadan, V.V., Ma, Y., Varadan, V.K., Lakhtakia, A., 1991. Scattering of Waves by Spheres and Cylinders. In: Varadan, V.V., Lakhtakia, A., Varadan, V.K. (Eds.), Field Representation and Introduction to Scattering. Elsevier, Amsterdam, p.211–324.Google Scholar
  56. Viviani, A., Golia, C., 2003. Thermocapillary flows in two-fluids liquid bridges. Acta Astronautica, 53(11):879–897. [doi:10.1016/S0094-5765(02)00240-0]CrossRefGoogle Scholar
  57. Walker, J.S., Henry, D., BenHadid, H., 2002. Magnetic stabilization of the buoyant convection in the liquid-encapsulated Czochralski process. J. Cryst. Growth, 243(1):108–116. [doi:10.1016/S0022-0248(02)01487-2]CrossRefGoogle Scholar
  58. Wei, W., Thiessen, D.B., Marston, P.L., 2004. Acoustic radiation force on a compressible cylinder in a standing wave. J. Acoust. Soc. Am., 116(1):201–208. [doi:10.1121/1.1753291]CrossRefGoogle Scholar
  59. Zayas, F., Alexander, J.I.D., Meseguer, J., Ramus, J.F., 2000. On the stability limits of long nonaxisymmetric cylindrical liquid bridges. Phys. Fluids, 12(5):979–985. [doi:10.1063/1.870353]MathSciNetMATHCrossRefGoogle Scholar
  60. Zhang, S., Jin, J., 1996. Computation of Special Functions. John Wiley & Sons.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Acoustics Research Lab., Department of Mechanical EngineeringIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations