Advertisement

Journal of Zhejiang University SCIENCE A

, Volume 9, Issue 2, pp 207–210 | Cite as

Generalized bounds on the partial periodic correlation of complex roots of unity sequence set

  • Li-fang Feng
  • Ping-zhi Fan
Article

Abstract

In this paper, the generalized bounds are derived on the partial periodic correlation of complex roots of unity sequence set with zero or low correlation zone (ZCZ/LCZ) as the important criteria of the sequence design and application. The derived bounds are with respect to family size, subsequence length, maximum partial autocorrelation sidelobe, maximum partial cross-correlation value and the ZCZ/LCZ. The results show that the derived bounds include the previous periodic bounds, such as Sarwate bound, Welch bound, Peng-Fan bound and Paterson-Lothian bound, as special cases.

Key words

Partial correlation Zero correlation zone (ZCZ) Low correlation zone (LCZ) CDMA 

Document code

CLC number

TN914; TN919 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appuswamy, R., Chaturvedi, A.K., 2006. A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences. IEEE Trans. on Information Theory, 52(8):3817–3826. [doi:10.1109/TIT.2006.878171]CrossRefMathSciNetGoogle Scholar
  2. Fan, P.Z., 2004. Spreading sequence design and theoretical limits for quasisynchronous CDMA systems. EURASIP J. Wirel. Commun. & Networking, (1):19–31. [doi:10.1155/S1687147204405015]Google Scholar
  3. Fan, P.Z., Hao, L., 2000. Generalized orthogonal sequences and their applications in synchronous CDMA. IEICE Trans. on Fundam., E83-A(11):2054–2069.Google Scholar
  4. Paterson, K.G., Lothian, P.J.G., 1998. Bounds on partial correlations of sequences. IEEE Trans. on Information Theory, 44(3):1164–1175. [doi:10.1109/18.669265]MATHCrossRefMathSciNetGoogle Scholar
  5. Peng, D.Y., Fan, P.Z., 2002. Generalized Sarwate bounds on periodic autocorrelations and cross-correlations of binary sequences. IEE Electronics Letters, 38(24):1521–1523. [doi:10.1049/el:20021064]CrossRefGoogle Scholar
  6. Peng, D.Y., Fan, P.Z., 2003. Generalized Sarwate Bounds on the Periodic Correlation of Complex Roots of Unity Sequences. Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications. IEEE Press, Beijing, p.449–452. [doi:10.1109/PIMRC.2003.1264312]Google Scholar
  7. Pursley, M.B., 1977. Performance evaluation for phase-coded spread-spectrum multiple-access communication-part I: system analysis. IEEE Trans. on Commun., 25(8):795–799. [doi:10.1109/TCOM.1977.1093915]MATHCrossRefMathSciNetGoogle Scholar
  8. Pursley, M.B., Sarwate, D.V., 1977. Performance evaluation for phase-coded spread-spectrum multiple-access communication-part II: code sequence analysis. IEEE Trans. on Commun., 25(8):800–803. [doi:10.1109/TCOM.1977.1093916]MATHCrossRefGoogle Scholar
  9. Sarwate, D.V., 1979. Bounds on crosscorrelation and autocorrelation of sequences. IEEE Trans. on Information Theory, 25:720–724. [doi:10.1109/TIT.1979.1056116]MATHCrossRefMathSciNetGoogle Scholar
  10. Sarwate, D.V., Pursley, M.B., Basar, T.U., 1984. Partial correlation effects in direct-sequence spread-spectrum multiple-access communication systems. IEEE Trans. on Commun., 32(5):567–573.CrossRefGoogle Scholar
  11. Tang, X.H., Mow, W.H., 2006. Design of spreading codes for quasi-synchronous CDMA with intercell interference. IEEE J. Selected Areas Commun., 24(1):84–93. [doi:10.1109/JSAC.2005.858877]CrossRefGoogle Scholar
  12. Welch, L.R., 1974. Lower bounds on the maximum cross correlation of signals. IEEE Trans. on Information Theory, 20:397–399. [doi:10.1109/TIT.1974.1055219]MATHCrossRefMathSciNetGoogle Scholar
  13. Zhou, Z.C., Tang, X.H., 2006. A New Class of Sequences with Zero Correlation Zone Based on Interleaved Perfect Sequences. IEEE Information Theory Workshop. Chengdu, p.548–551. [doi:10.1109/ITW.2006.322878]Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Li-fang Feng
    • 1
  • Ping-zhi Fan
    • 1
  1. 1.Institute of Mobile CommunicationSouthwest Jiaotong UniversityChengduChina

Personalised recommendations