Journal of Zhejiang University SCIENCE B

, Volume 8, Issue 10, pp 771–776 | Cite as

Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture

  • Treviňo Lucia 
  • Contreras-Esquivel Juan C. 
  • Rodríguez-Herrera Raul 
  • Aguilar Cristóbal Noé 
Science Letters

Abstract

The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices.

Key words

Tannase Gallic acid Polyurethane matrix support Solid state culture Aspergillus niger Aa-20 

CLC number

TS2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, C.N., 2000. Induction and Repression of Synthesis of Tannase from Aspergillus niger Aa/20 in Submerged and Solid State Cultures. PhD Thesis, Metropolitan Autonomous University, Mexico (in Spanish).Google Scholar
  2. Aguilar, C.N., Gutiérrez-Sánchez, G., 2001. Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Tech. Int., 7(5):373–382. [doi:10.1177/108201301772660411]CrossRefGoogle Scholar
  3. Aguilar, C.N., Augur, C., Favela-Torres, E., Viniegra-González, G., 2001a. Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Proc. Biochem., 36(6):565–570. [doi:10.1016/S0032-9592(00)00251-X]CrossRefGoogle Scholar
  4. Aguilar, C.N., Augur, C., Favela-Torres, E., Viniegra-González, G., 2001b. Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J. Ind. Microbiol. Biotechnol., 26(5):296–302. [doi:10.1038/sj.jim.7000132]PubMedCrossRefGoogle Scholar
  5. Aguilar, C.N., Favela-Torres, E., Viniegra-González, G., Augur, C., 2002. Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Appl. Biochem. Biotechnol., 102–103(1–6):407–414. [doi:10.1385/ABAB:102-103:1-6:407]PubMedCrossRefGoogle Scholar
  6. Aguilar, C.N., Rodríguez-Herrera, R., Gutiérrez-Sánchez, G., Augur, C., Favela-Torres, E., Prado-Barragán, L.A., Ramírez-Coronel, A., Contreras-Esquivel, J.C., 2007. Microbial tannases: advances and perpectives. Appl. Microbiol. Biotechnol., 76(1):47–59. [doi:10.1007/s00253-007-1000-2]PubMedCrossRefGoogle Scholar
  7. Aoki, K., Shinke, R., Nishira, H., 1976. Purification and some properties of yeast tannase. Agric. Biol. Chem., 40(1):79–85.Google Scholar
  8. Belmares, R., Contreras-Esquivel, J.C., Rodríguez-Herrera, R., Ramírez-Coronel, A., Aguilar, C.N., 2004. Microbial production of tannase: an enzyme with potential use in food industry. Lebensmit. Wiss. und-Technol., 37(8):857–864. [doi:10.1016/j.lwt.2004.04.002]CrossRefGoogle Scholar
  9. Bhat, T.K., Singh, B., Sharma, O.P., 1998. Microbial degradation of tannins—a current perspective. Biodegradation, 9(5):343–357. [doi:10.1023/A:1008397506963]PubMedCrossRefGoogle Scholar
  10. Cerda-Montalvo, M.L., Contreras-Esquivel, J.C., Rodríguez-Herrera, R., Aguilar, C.N., 2005. Glucose diffusion on support for solid state fermentation and its influence on tannase production profiles. Int. J. Chem. Reactor Eng., 3(5):1–10.Google Scholar
  11. Córdova-López, J., Gutierrez-Rojas, M., Huerta, S., Saucedo-Castañeda, G., Favela-Torres, E., 1996. Biomass estimation of Aspergillus niger growing on real and model supports in solid state fermentation. Biotechnol. Tech., 10(1):1–6. [doi:10.1007/BF00161075]CrossRefGoogle Scholar
  12. García-Nájera, J.A., Medina, A., Castro, Y., Reyes-Vega, M.L., Prado-Barragán, L.A., Rodríguez-Herrera, R., Aguilar, C.N., 2002. Accumulation and Recovery of Gallic Acid in a Submerged Culture of Aspergillus niger Aa-20. IFT Annual Meeting, Anaheim, CA, USA, p. 25.Google Scholar
  13. Georgiou, G., Shuler, M.L., 1986. A computer-model for the growth and differentiation of a fungal colony on solid substrate. Biotechnol. Bioeng., 28(3):405–416. [doi:10.1002/bit.260280314]CrossRefPubMedGoogle Scholar
  14. Kar, B., Banerjee, R., 2000. Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. J. Ind. Microbiol. Biotechnol., 25(1):29–38. [doi:10.1038/sj.jim.7000011]CrossRefGoogle Scholar
  15. Kar, B., Banerjee, R., Bhattacharyya, B.C., 1999. Microbial production of gallic acid by modified solid state fermentation. J. Ind. Microbiol. Biotechnol., 23(3):173–177. [doi:10.1038/sj.jim.2900713]CrossRefGoogle Scholar
  16. Khanbabaee, K., van Ree, T., 2001. Tannins: classification and definition. Nat. Prod. Rep., 18(6):641–649. [doi:10.1039/b101061l]PubMedCrossRefGoogle Scholar
  17. Lekha, P.K., Lonsane, B.K., 1994. Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL-104 in solid-state, liquid surface and submerged fermentations. Proc. Biochem., 29(6):497–503. [doi:10.1016/0032-9592(94)85019-4]CrossRefGoogle Scholar
  18. Lekha, P.K., Lonsane, B.K., 1997. Production and application of tannin acyl hydrolase: state of the art. Adv. Appl. Microbiol., 44(9/17):215–260.PubMedCrossRefGoogle Scholar
  19. Mitchell, D.A., Do, D.D., Greenfield, P.F., Doelle, H.W., 1991. A semimechanistic mathematical model for growth of Rhizopus oligosporus in a model solid-state system. Biotechnol. Bioeng., 38(4):353–362. [doi:10.1002/bit.260380405]CrossRefPubMedGoogle Scholar
  20. Mitchell, D.A., von Meien, O.F., Krieger, N., Dalsenter, F.D.H., 2004. A review of recent developments in modelling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem. Eng. J., 17(1):15–26. [doi:10.1016/S1369-703X(03)00120-7]CrossRefGoogle Scholar
  21. Nagel, E.J., van As, H., Tramper, J., Rinzema, A., 2002. Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with Aspergillus oryzae. Biotechnol. Bioeng., 79(6):653–663. [doi:10.1002/bit.10332]PubMedCrossRefGoogle Scholar
  22. Olsson, S., 1994. Uptake of glucose and phosphorus by growing colonies of Fusarium oxxysporum as quantified by image analysis. Exp. Mycol., 18(1):33–47. [doi:10.1006/emyc.1994.1004]CrossRefGoogle Scholar
  23. Oostra, J., le Comte, E.P., van den Heuvel, J.C., Tramper, J., Rinzema, A., 2001. Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol. Bioeng., 75(1):13–24. [doi:10.1002/bit.1159]PubMedCrossRefGoogle Scholar
  24. Rahardjo, Y.S., Weber, F.J., le Comte, E.P., Tramper, J., Rinzema, A., 2002. Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnol. Bioeng., 78(5):539–544. [doi:10.1002/bit.10222.abs]PubMedCrossRefGoogle Scholar
  25. Rajagopalan, S., Modak, J.M., 1995a. Evaluation of relative growth limitation due to depletion of glucose and oxygen during fungal growth on a spherical solid particle. Chem. Eng. Sci., 50(5):803–811. [doi:10.1016/0009-2509(94)00452-W]CrossRefGoogle Scholar
  26. Rajagopalan, S., Modak, J.M., 1995b. Modelling of heat and mass transfer for solid-state fermentation process in tray bioreactor. Bioproc. Biosyst. Eng., 13(3):161–169.Google Scholar
  27. Sharma, S., Bhat, T.K., Dawra, R.K., 2000. A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem., 279(1):85–89. [doi:10.1006/abio.1999.4405]PubMedCrossRefGoogle Scholar
  28. Viniegra-González, G., Favela-Torres, E., 2006. Why solid-state fermentation seems to be resistant to catabolite repression. Food Technol. Biotechnol., 44(3):397–406.Google Scholar
  29. Viniegra-González, G., Favela-Torres, E., Aguilar, C.N., Romero-Gomez, S.J., Diaz-Godinez, G., Augur, C., 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J., 13(2–3):157–167. [doi:10.1016/S1369-703X(02)00128-6]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Treviňo Lucia 
    • 1
  • Contreras-Esquivel Juan C. 
    • 1
  • Rodríguez-Herrera Raul 
    • 1
  • Aguilar Cristóbal Noé 
    • 1
  1. 1.Department of Food ResearchAutonomous University of CoahuilaSaltillo, CoahuilaMexico

Personalised recommendations