Advertisement

Journal of Zhejiang University SCIENCE B

, Volume 8, Issue 7, pp 453–457 | Cite as

Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

  • Karthikeyan B. 
  • Jaleel C. A. 
  • Gopi R. 
  • Deiveekasundaram M. 
Science Letters

Abstract

An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters. There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs.

Key words

Rhizosphere Non-rhizosphere Azospirillum Azotobacter Antioxidant enzyme Catharanthus roseus 

CLC number

S35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Baki, A.A., Anderson, J.D., 1973. Vigour determination in soybean seed by multiple criteria. Crop Sci., 13:630–633.CrossRefGoogle Scholar
  2. Beauchamp, C.O., Fridovich, I., 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44(1):276–287. [doi:10.1016/0003-2697(71)90370-8]PubMedCrossRefGoogle Scholar
  3. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72(1–2):248–253. [doi:10.1016/0003-2697(76)90527-3]PubMedCrossRefGoogle Scholar
  4. Brown, M.E., Burlingham, S.K., 1968. Production of plant growth substances by Azotobacter chroococcum. J. Gen. Microbiol., 53:135–144.PubMedGoogle Scholar
  5. Chandlee, J.M., Scandalios, J.G., 1984. Analysis of variants affecting the catalase development program in maize scutellum. Theor. Appl. Genet., 69(1):71–77. [doi:10.1007/BF00262543]CrossRefGoogle Scholar
  6. Chaparzadeh, N., Amico, M.L., Nejad, R.K., Izzo, R., Izzo, F.N., 2004. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol. Biochem., 42(9):695–701. [doi:10.1016/j.plaphy.2004.07.001]PubMedCrossRefGoogle Scholar
  7. Deka, B.C., Bora, G.C., Shadeque, A., 1992. Effect of Azospirillum on growth and yield of chilli (Capsicum annuum L.) cultivar Pusa Jawala. Haryana J. Hort. Sci., 38:41–46.Google Scholar
  8. Govindarajan, K., Kavitha, K., 2001. Studies on Azospirillum Associated with Rice Varities. Workshop on Recent Developments in Biofertilizers for Rice-Based Cropping System, Coimbatore, p.9–10.Google Scholar
  9. Hernandez, J.A., Almansa, M.S., 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea plants. Physiol. Plant., 115(2):251–257. [doi:10.1034/j.1399-3054.2002.1150211.x]PubMedCrossRefGoogle Scholar
  10. Imlay, J.A., 2003. Pathways of oxidative damage. Annu. Rev. Microbiol., 57(1):395–418. [doi:10.1146/annurev.micro.57.030502.090938]PubMedCrossRefGoogle Scholar
  11. ISTA (International Seed Testing Association), 1976. International rules for seed testing. Seed Sci. Tech., 4:52–70.Google Scholar
  12. Jaleel, C.A., Gopi, R., Lakshmanan, G.M.A., Panneerselvam, R., 2006. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci., 171(2):271–276. [doi:10.1016/j.plantsci.2006.03.018]CrossRefGoogle Scholar
  13. Jaleel, C.A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R., Panneerselvam, R., 2007. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73(2):190–195. [doi:10.1016/j.sajb.2006.11.001]CrossRefGoogle Scholar
  14. Kar, A., Choudhary, B.K., Bandyopadhyay, N.G., 2003. Comparative evaluation of hypoglycemic activity of some Indian medicinal plants in alloxan diabetic rats. J. Ethnopharmacol., 84(1):105–108. [doi:10.1016/S0378-8741(02)00144-7]PubMedCrossRefGoogle Scholar
  15. Kumar, K.B., Khan, P.A., 1982. Peroxidase and polyphenol oxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Ind. J. Exp. Bot., 20:412–416.Google Scholar
  16. Lakshmanan, A., Govindarajan, K., Kumar, K., 2005. Effect of seed treatment with native diazotrophs on the seedling parameters of Senna and Ashwagandha. Crop Res., 30(1):119–123.Google Scholar
  17. Lin, C.C., Kao, C.H., 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul., 30(2):151–155. [doi:10.1023/A:1006345126589]CrossRefGoogle Scholar
  18. Magnotta, M., Murata, J., Chen, J., de Luca, V., 2006. Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don. by alkaloid and enzymatic profiling. Phytochemistry, 67(16):1758–1764. [doi:10.1016/j.phytochem.2006.05.018]PubMedCrossRefGoogle Scholar
  19. Muthukumarasamy, M., Dutta Gupta, S., Panneerselvam, R., 2000. Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biol. Plant., 43(2): 317–320. [doi:10.1023/A:1002741302485]CrossRefGoogle Scholar
  20. Nurnberger, T., Colling, C., Hahlbrock, K., Jabs, T., Renelt, A., Sacks, W.R., Scheel, D., 1994. Perception and transduction of an elicitor signal in cultured parsley cells. Biochem. Soc. Symp., 60:173–182.PubMedGoogle Scholar
  21. Prochazkova, D., Sairam, R.K., Srivastava, G.C., Singh, D.V., 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci., 161(4): 765–771. [doi:10.1016/S0168-9452(01)00462-9]CrossRefGoogle Scholar
  22. Reddy, A.R., Chiatanya, K.V., Vivekanandan, M., 2004. Draught induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol., 161(11):1189–1202. [doi:10.1016/j.jplph.2004.01.013]CrossRefGoogle Scholar
  23. Sairam, R.K., Veerabhadra Rao, K., Srivastava, G.C., 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci., 163(5): 1037–1046. [doi:10.1016/S0168-9452(02)00278-9]CrossRefGoogle Scholar
  24. Somssich, I.E., Hahlbrock, K., 1998. Pathogen defence in plant—a paradigm of biological complexity. Trends Plant Sci., 3(3):86–90. [doi:10.1016/S1360-1385(98)01199-6]CrossRefGoogle Scholar
  25. Verpoorte, R., Contin, A., Memelink, J., 2002. Biotechnology for the production of plant secondary metabolites. Phytochem. Rev., 1(1):13–25. [doi:10.1023/A:1015871916833]CrossRefGoogle Scholar
  26. Vranova, E., Inze, D., van Brensegem, F., 2002. Signal transduction during oxidative stress. J. Exp. Bot., 53(372): 1227–1236. [doi:10.1093/jexbot/53.372.1227]PubMedCrossRefGoogle Scholar
  27. Watanabe, I., Barraquio, W.L., 1979. Low levels of fixed nitrogen are required for isolation of free-living nitrogen fixing organisms from rice roots. Nature, 277(5697): 565–566. [doi:10.1038/277565a0]CrossRefGoogle Scholar
  28. Zhao, J., Lawrence, T., Davis, C., Verpoorte, R., 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv., 23(4):283–333. [doi:10.1016/j.biotechadv.2005.01.003]PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Karthikeyan B. 
    • 1
  • Jaleel C. A. 
    • 2
  • Gopi R. 
    • 2
  • Deiveekasundaram M. 
    • 1
  1. 1.Department of Microbiology, Faculty of AgricultureAnnamalai UniversityAnnamalainagarIndia
  2. 2.Stress Physiology Lab, Department of BotanyAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations