Journal of Zhejiang University SCIENCE B

, Volume 8, Issue 6, pp 398–409 | Cite as

Lipids changes in liver cancer

  • Jiang Jing-ting 
  • Xu Ning 
  • Zhang Xiao-ying 
  • Wu Chang-ping 
Review

Abstract

Liver is one of the most important organs in energy metabolism. Most plasma apolipoproteins and endogenous lipids and lipoproteins are synthesized in the liver. It depends on the integrity of liver cellular function, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs, these processes are impaired and the plasma lipid and lipoprotein patterns may be changed. Liver cancer is the fifth common malignant tumor worldwide, and is closely related to the infections of hepatitis B virus (HBV) and hepatitis C virus (HCV). HBV and HCV infections are quite common in China and other Southeast Asian countries. In addition, liver cancer is often followed by a procession of chronic hepatitis or cirrhosis, so that hepatic function is damaged obviously on these bases, which may significantly influence lipid and lipoprotein metabolism in vivo. In this review we summarize the clinical significance of lipid and lipoprotein metabolism under liver cancer.

Key words

Lipids Lipoprotein Liver cancer 

CLC number

R735.7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, J.J., Adolphson, J.L., Hazzard, W.R., 1977. Radioimmunoassay of human plasma Lp(a) lipoprotein. J. Lipid. Res., 18:331–338.PubMedGoogle Scholar
  2. Artl, A., Marsche, G., Pussinen, P., Knipping, G., Sattler, W., Malle, E., 2002. Impaired capacity of acute-phase high density lipoprotein particles to deliver cholesteryl ester to the human HUH-7 hepatoma cell line. Int. J. Biochem. Cell Biol., 34(4):370–381. [doi:10.1016/S1357-2725(01)00132-7]PubMedCrossRefGoogle Scholar
  3. Assmann, G., Schriewer, H., 1980. HDL cholesterol: biochemical aspects. Klin. Wochenschr., 58(15):749–756 (in German). [doi:10.1007/BF01478282]PubMedCrossRefGoogle Scholar
  4. Bae, E.S., Jung, J.W., Jang, J.Y., Choi, S.K., Yoon, S.H.C., 2002. Clinical significance of correlation between COX-2 and CD34-expression in dysplastic nodules. Hepatology, 36:445A.CrossRefGoogle Scholar
  5. Bamberger, M., Glick, J.M., Rothblat, G.H., 1983. Hepatic lipase stimulates the uptake of high density lipoprotein cholesterol by hepatoma cells. J. Lipid. Res., 24:869–876.PubMedGoogle Scholar
  6. Basili, S., Andreozzi, P., Vieri, M., Maurelli, M., Cara, D., Cordova, C., Alessandri, C., 1997. Lipoprotein(a) serum levels in patients with hepatocarcinoma. Clin. Chim. Acta, 262(1–2):53–60. [doi:10.1016/S0009-8981(97)06533-9]PubMedCrossRefGoogle Scholar
  7. Bégin, M.E., Das, U.N., Ells, G., Horrobin, D.F., 1985. Selective killing of human cancer cells by polyunsaturated fatty acids. Prostaglandins Leukot. Med., 19(2):177–186. [doi:10.1016/0262-1746(85)90084-8]PubMedCrossRefGoogle Scholar
  8. Bégin, M.E., Ells, G., Das, U.N., Horrobin, D.F., 1986. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J. Natl. Cancer Inst., 77:1053–1062.PubMedGoogle Scholar
  9. Booth, S., Clifton, P.M., Nestel, P.J., 1991. Lack of effect of acute alcohol ingestion on plasma lipids. Clin. Chem., 37:1649.PubMedGoogle Scholar
  10. Bravo, E., Carpinelli, G., Proietti, E., Belardelli, F., Cantafora, A., Podo, F., 1990. Alterations of lipid composition in Friend leukemia cell tumors in mice treated with tumor necrosis factor-alpha. FEBS Lett., 260(2):225–228. [doi:10.1016/0014-5793(90)80108-U]CrossRefGoogle Scholar
  11. Brinton, E.A., 1996. Oral estrogen replacement therapy in postmenopausal women selectively raises levels and production rates of lipoprotein A-I and lowers hepatic lipase activity without lowering the fractional catabolic rate. Arterioscler. Thromb. Vasc. Biol., 16:431–440.PubMedGoogle Scholar
  12. Busch, S.J., Barnhart, R.L., Martin, G.A., Fitzgerald, M.C., Yates, M.T., Mao, S.J., Thomas, C.E., Jackson, R.L., 1994. Human hepatic triglyceride lipase expression reduces high density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice. J. Biol. Chem., 269: 16376–16382.PubMedGoogle Scholar
  13. Cambien, F., Ducimetiere, P., Richard, J., 1980. Total serum cholesterol and cancer mortality in a middle-aged male population. Am. J. Epidemiol., 112:388–394.PubMedGoogle Scholar
  14. Carter, C.A., 2000. Protein kinase C as a drug target: implications for drug or diet prevention and treatment of cancer. Curr. Drug Targets, 1(2):163–183. [doi:10.2174/1389450003349317]PubMedCrossRefGoogle Scholar
  15. Casey, P.J., Solski, P.A., Der, C.J., Buss, J.E., 1989. p21ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. (USA), 86(21):8323–8327. [doi:10.1073/pnas.86.21.8323]CrossRefGoogle Scholar
  16. Charpentier, D., Tremblay, C., Rassart, E., Rhainds, D., Auger, A., Milne, R.W., Brissette, L., 2000. Low-and high-density lipoprotein metabolism in HepG2 cells expressing various levels of apolipoprotein E. Biochemistry, 39(51):16084–16091. [doi:10.1021/bi001436u]PubMedCrossRefGoogle Scholar
  17. Chu, A.C., Tsang, S.Y., Lo, E.H., Fung, K.P., 2001. Low density lipoprotein as a targeted carrier for doxorubicin in nude mice bearing human hepatoma HepG2 cells. Life Sci., 70(5):591–601. [doi:10.1016/S0024-3205(01)01441-2]PubMedCrossRefGoogle Scholar
  18. Cicognani, C., Malavolti, M., Morselli-Labate, A.M., Zamboni, L., Sama, C., Barbara, L., 1997. Serum lipid and lipoprotein patterns in patients with liver cirrhosis and chronic active hepatitis. Arch. Intern. Med., 157(7): 792–796. [doi:10.1001/archinte.157.7.792]PubMedCrossRefGoogle Scholar
  19. Cooper, M.E., Akdeniz, A., Hardy, K.J., 1996. Effects of liver transplantation and resection on lipid parameters: a longitudinal study. Aust. N. Z. J. Surg., 66:743–746.PubMedGoogle Scholar
  20. Cowen, A.E., Campbell, C.B., 1977. Bile salt metabolism. I. The physiology of bile salts. Aust. N. Z. J. Med., 7:579–586.PubMedGoogle Scholar
  21. Curtiss, L.K., Boisvert, W.A., 2000. Apolipoprotein E and atherosclerosis. Curr. Opin. Lipidol., 11(3):243–251. [doi:10.1097/00041433-200006000-00004]PubMedCrossRefGoogle Scholar
  22. Davis, R., Bryson, H.M., 1994. Levofloxacin. A review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs, 47:677–700.PubMedGoogle Scholar
  23. de Alaniz, M.J., Marra, C.A., 1994. Role of delta 9 desaturase activity in the maintenance of high levels of monoenoic fatty acids in hepatoma cultured cells. Mol. Cell. Biochem., 137(1):85–90. [doi:10.1007/BF00926043]PubMedCrossRefGoogle Scholar
  24. Dessì, S., Batetta, B., Pulisci, D., Spano, O., Anchisi, C., Tessitore, L., Costelli, P., Baccino, F.M., Aroasio, E., Pani, P., 1994. Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer. Cancer, 73(2):253–258. [doi:10.1002/1097-0142(19940115)73:2〈253::AID-CNCR2820730204〉3.0.CO;2-F]PubMedCrossRefGoogle Scholar
  25. Donnelly, K.L., Smith, C.I., Schwarzenberg, S.J., Jessurun, J., Boldt, M.D., Parks, E.J., 2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest., 115(5):1343–1351. [doi:10.1172/JCI200523621]PubMedCrossRefGoogle Scholar
  26. Dugi, K.A., Vaisman, B.L., Sakai, N., Knapper, C.L., Meyn, S.M., Brewer, H.B.Jr, Santamarina-Fojo, S., 1997. Adenovirus-mediated expression of hepatic lipase in LCAT transgenic mice. J. Lipid. Res., 38:1822–1832.PubMedGoogle Scholar
  27. Dugi, K.A., Brandauer, K., Schmidt, N., Nau, B., Schneider, J.G., Mentz, S., Keiper, T., Schaefer, J.R., Meissner, C., Kather, H., Bahner, M.L., Fiehn, W., Kreuzer, J., 2001. Low hepatic lipase activity is a novel risk factor for coronary artery disease. Circulation, 104:3057–3062.PubMedGoogle Scholar
  28. Eggerman, T.L., Hoeg, J.M., Meng, M.S., Tombragel, A., Bojanovski, D., Brewer, H.B.Jr, 1991. Differential tissue-specific expression of human apoA-I and apoA-II. J. Lipid. Res., 32:821–828.PubMedGoogle Scholar
  29. Eisenberg, S., Levy, R.I., 1975. Lipoprotein metabolism. Adv. Lipid. Res., 13:1–89.PubMedGoogle Scholar
  30. Fazio, S., Yao, Z., 1995. The enhanced association of apolipoprotein E with apolipoprotein B-containing lipoproteins in serum-stimulated hepatocytes occurs intracellularly. Arterioscler. Thromb. Vasc. Biol., 15:593–600.PubMedGoogle Scholar
  31. Fielding, C.J., Fielding, P.E., 1995. Molecular physiology of reverse cholesterol transport. J. Lipid. Res., 36:211–228.PubMedGoogle Scholar
  32. Fox, J.C., Hay, R.V., 1992. Eicosapentaenoic acid inhibits cell growth and triacylglycerol secretion in McA-RH7777 rat hepatoma cultures. Biochem. J., 286(Pt 1):305–312.PubMedGoogle Scholar
  33. Frederick, G.L., Begg, R.W., 1956. A study of hyperlipemia in the tumor-bearing rat. Cancer Res., 16:548–552.PubMedGoogle Scholar
  34. Fujiyama-Fujiwara, Y., Umeda, R., Igarashi, O., 1992. Metabolism of arachidonic, eicosapentaenoic, and docosahexaenoic acids in HepG2 cells and rat hepatocytes. J. Nutr. Sci. Vitaminol. (Tokyo), 38:329–334.Google Scholar
  35. Funahashi, T., Yokoyama, S., Yamamoto, A., 1989. Association of apolipoprotein E with the low density lipoprotein receptor: demonstration of its cooperativity on lipid microemulsion particles. J. Biochem. (Tokyo), 105:582–587.Google Scholar
  36. Garcia, A., Barbaras, R., Collet, X., Bogyo, A., Chap, H., Perret, B., 1996. High-density lipoprotein 3 receptordependent endocytosis pathway in a human hepatoma cell line (HepG2). Biochemistry, 35(40):13064–13071. [doi:10.1021/bi952223l]PubMedCrossRefGoogle Scholar
  37. Geiss, H.C., Ritter, M.M., Richter, W.O., Schwandt, P., Zachoval, R., 1996. Low lipoprotein (a) levels during acute viral hepatitis. Hepatology, 24(6):1334–1337. [doi:10.1002/hep.510240602]PubMedCrossRefGoogle Scholar
  38. Genest, J.J., Mcnamara, J.R., Ordovas, J.M., Martin-Munley, S., Jenner, J.L., Millar, J., Salem, D.N., Schaefer, E.J., 1990. Effect of elective hospitalization on plasma lipoprotein cholesterol and apolipoproteins A-I, B and Lp(a). Am. J. Cardiol., 65(9):677–679. [doi:10.1016/0002-9149(90)91052-8]PubMedCrossRefGoogle Scholar
  39. Gifford, G.E., Lohmann-Matthes, M.L., 1987. Gamma interferon priming of mouse and human macrophages for induction of tumor necrosis factor production by bacterial lipopolysaccharide. J. Natl. Cancer Inst., 78:121–124.PubMedGoogle Scholar
  40. Greco, A.V., Mingrone, G., Gasbarrini, G., 1995. Free fatty acid analysis in ascitic fluid improves diagnosis in malignant abdominal tumors. Clin. Chim. Acta, 239(1): 13–22. [doi:10.1016/0009-8981(95)06093-S]PubMedCrossRefGoogle Scholar
  41. Grünler, J., Olsson, J.M., Dallner, G., 1995. Estimation of dolichol and cholesterol synthesis in microsomes and peroxisomes isolated from rat liver. FEBS Lett., 358(3):230–232. [doi:10.1016/0014-5793(94)01431-Y]PubMedCrossRefGoogle Scholar
  42. Guan, Z.Q., Dong, Z.H., Wang, Q.H., Cao, D.X., Fang, Y.Y., Li, H.T., Uchenna, H.I., 2004. Cost of chronic hepatitis B infection in China. J. Clin. Gastroenterol., 38(Suppl. 3):175–178. [doi:10.1097/00004836-200411003-00010]Google Scholar
  43. Hachem, H., Favre, G., Raynal, G., Blavy, G., Canal, P., Soula, G., 1986. Serum apolipoproteins A-I, A-II and B in hepatic metastases. Comparison with other liver diseases: hepatomas and cirrhosis. J. Clin. Chem. Clin. Biochem., 24:161–166.PubMedGoogle Scholar
  44. Hanai, T., Hashimoto, T., Nishiwaki, K., Ono, M., Akamo, Y., Tanaka, M., Mizuno, I., Yura, J., 1993. Comparison of prostanoids and their precursor fatty acids in human hepatocellular carcinoma and noncancerous reference tissues. J. Surg. Res., 54(1):57–60. [doi:10.1006/jsre.1993.1010]PubMedCrossRefGoogle Scholar
  45. Heeren, J., Grewal, T., Laatsch, A., Becker, N., Rinninger, F., Rye, K.A., Beisiegel, U., 2004. Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. J. Biol. Chem., 279(53): 55483–55492. [doi:10.1074/jbc.M409324200]PubMedCrossRefGoogle Scholar
  46. Higuchi, K., Hospattankar, A.V., Law, S.W., Meglin, N., Cortright, J., Brewer, H.B.Jr, 1988. Human apolipoprotein B (apoB) mRNA: identification of two distinct apoB mRNAs, an mRNA with the apoB-100 sequence and an apoB mRNA containing a premature in-frame translational stop codon, in both liver and intestine. Proc. Natl. Acad. Sci. (USA), 85(6):1772–1776. [doi:10.1073/pnas.85.6.1772]CrossRefGoogle Scholar
  47. Hildebrandt, L.A., Spennetta, T., Elson, C., Shrago, E., 1995. Utilization and preferred metabolic pathway of ketone bodies for lipid synthesis by isolated rat hepatoma cells. Am. J. Physiol., 269:C22–C27.PubMedGoogle Scholar
  48. Hirano, R., Igarashi, O., Kondo, K., Itakura, H., Matsumoto, A., 2001. Regulation by long-chain fatty acids of the expression of cholesteryl ester transfer protein in HepG2 cells. Lipids, 36(4):401–406. [doi:10.1007/s11745-001-0735-3]PubMedCrossRefGoogle Scholar
  49. Hiraoka, H., Yamashita, S., Matsuzawa, Y., Kubo, M., Nozaki, S., Sakai, N., Hirano, K., Kawata, S., Tarui, S., 1993. Decrease of hepatic triglyceride lipase levels and increase of cholesteryl ester transfer protein levels in patients with primary biliary cirrhosis: relationship to abnormalities in high-density lipoprotein. Hepatology, 18(1):103–110. [doi:10.1002/hep.1840180117]PubMedGoogle Scholar
  50. Hoeg, J.M., Demosky, S.J.Jr, Edge, S.B., Gregg, R.E., Osborne, J.C.Jr, Brewer, H.B.Jr, 1985. Characterization of a human hepatic receptor for high density lipoproteins. Arteriosclerosis, 5:228–237.PubMedGoogle Scholar
  51. Hostmark, A.T., Lystad, E., 1992. Growth inhibition of human hepatoma cells (HepG2) by polyunsaturated fatty acids. Protection by albumin and vitamin E. Acta Physiol. Scand., 144:83–88.Google Scholar
  52. Hu, K.Q., 2003. Cyclooxygenase 2 (COX2)-prostanoid pathway and liver diseases. Prostaglandins Leukot. Essent. Fatty Acids, 69(5):329–337. [doi:10.1016/j.plefa.2003.07.001]PubMedCrossRefGoogle Scholar
  53. Huard, K., Bourgeois, P., Rhainds, D., Falstrault, L., Cohn, J.S., Brissette, L., 2005. Apolipoproteins C-II and C-III inhibit selective uptake of low-and high-density lipoprotein cholesteryl esters in HepG2 cells. Int. J. Biochem. Cell Biol., 37(6):1308–1318. [doi:10.1016/j.biocel.2005.01.005]PubMedCrossRefGoogle Scholar
  54. Iguchi, T., Takasugi, N., Nishimura, N., Kusunoki, S., 1989. Correlation between mammary tumor and blood glucose, serum insulin, and free fatty acids in mice. Cancer Res., 49:821–825.PubMedGoogle Scholar
  55. Kader, A., Davis, P.J., Kara, M., Liu, H., 1998. Drug targeting using low density lipoprotein (LDL): physicochemical factors affecting drug loading into LDL particles. J. Control. Rel., 55(2–3):231–243. [doi:10.1016/S0168-3659(98)00052-2]CrossRefGoogle Scholar
  56. Kanel, G.C., Radvan, G., Peters, R.L., 1983. High-density lipoprotein cholesterol and liver disease. Hepatology, 3:343–348.PubMedCrossRefGoogle Scholar
  57. Kang, S.K., Chung, T.W., Lee, J.Y., Lee, Y.C., Morton, R.E., Kim, C.H., 2004. The hepatitis B virus X protein inhibits secretion of apolipoprotein B by enhancing the expression of N-acetylglucosaminyltransferase III. J. Biol. Chem., 279(27):28106–28112. [doi:10.1074/jbc.M403176200]PubMedCrossRefGoogle Scholar
  58. Katsuramaki, T., Hirata, K., Kimura, Y., Nagayama, M., Meguro, M., Kimura, H., Honma, T., Furuhata, T., Hideki, U., Hata, F., Mukaiya, M., 2002. Changes in serum levels of apolipoprotein A-1 as an indicator of protein metabolism after hepatectomy. Wound Repair and Regeneration, 10(1):77–82. [doi:10.1046/j.1524-475X.2002.10602.x]PubMedCrossRefGoogle Scholar
  59. Keler, T., Barker, C.S., Sorof, S., 1992. Specific growth stimulation by linoleic acid in hepatoma cell lines transfected with the target protein of a liver carcinogen. Proc. Natl. Acad. Sci. (USA), 89(11):4830–4834. [doi:10.1073/pnas.89.11.4830]CrossRefGoogle Scholar
  60. Koga, H., Sakisaka, S., Ohishi, M., Kawaguchi, T., Taniguchi, E., Sasatomi, K., Harada, M., Kusaba, T., Tanaka, M., Kimura, R., et al., 1999. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology, 29(3):688–696. [doi:10.1002/hep.510290355]PubMedCrossRefGoogle Scholar
  61. Kondo, M., Yamamoto, H., Nagano, H., Okami, J., Ito, Y., Shimizu, J., Eguchi, H., Miyamoto, A., Dono, K., Umeshita, K., et al., 1999. Increased expression of COX-2 in nontumor liver tissue is associated with shorter disease-free survival in patients with hepatocellular carcinoma. Clin. Cancer Res., 5:4005–4012.PubMedGoogle Scholar
  62. Kostner, G.M., 1983. Apolipoproteins and lipoproteins of human plasma: significance in health and in disease. Adv. Lipid. Res., 20:1–43.PubMedGoogle Scholar
  63. Kraft, H.G., Menzel, H.J., Hoppichler, F., Vogel, W., Utermann, G., 1989. Changes of genetic apolipoprotein phenotypes caused by liver transplantation. Implications for apolipoprotein synthesis. J. Clin. Invest., 83:137–142.PubMedGoogle Scholar
  64. Krempler, F., Kostner, G.M., Bolzano, K., Sandhofer, F., 1980. Turnover of lipoprotein (a) in man. J. Clin. Invest., 65:1483–1490.PubMedGoogle Scholar
  65. Krempler, F., Kostner, G.M., Roscher, A., Haslauer, F., Bolzano, K., Sandhofer, F., 1983. Studies on the role of specific cell surface receptors in the removal of lipoprotein (a) in man. J. Clin. Invest., 71:1431–1441.PubMedCrossRefGoogle Scholar
  66. Krieger, M., 1999. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI. Annu. Rev. Biochem., 68(1): 523–558. [doi:10.1146/annurev.biochem.68.1.523]PubMedCrossRefGoogle Scholar
  67. Krisans, S.K., 1996. Cell compartmentalization of cholesterol biosynthesis. Ann. N. Y. Acad. Sci., 804(1):142–164. [doi:10.1111/j.1749-6632.1996.tb18614.x]PubMedCrossRefGoogle Scholar
  68. Kumar, K., Sachdanandam, P., Arivazhagan, R., 1991. Studies on the changes in plasma lipids and lipoproteins in patients with benign and malignant breast cancer. Biochem. Int., 23:581–589.PubMedGoogle Scholar
  69. Langstein, H.N., Norton, J.A., 1991. Mechanisms of cancer cachexia. Hematol. Oncol. Clin. North. Am., 5:103–123.PubMedGoogle Scholar
  70. Law, M.R., Thompson, S.G., 1991. Low serum cholesterol and the risk of cancer: an analysis of the published prospective studies. Cancer Causes and Control, 2(4):253–261. [doi:10.1007/BF00052142]PubMedCrossRefGoogle Scholar
  71. Levi, S., 1972. Estimation of fetal age: ultrasonics and other methods. J. Gynecol. Obstet. Biol. Reprod. (Paris), 1:314–315.Google Scholar
  72. Lewis, G.F., Rader, D.J., 2005. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res., 96(12):1221–1232. [doi:10.1161/01.RES.0000170946.56981.5c]PubMedCrossRefGoogle Scholar
  73. Lin, C., Blank, W., Ceriani, R.L., Baker, N., 1992. Effect of human mammary MX-1 tumor on plasma free fatty acids in fasted and fasted-refed nude mice. Lipids, 27(1):33–37. [doi:10.1007/BF02537055]PubMedCrossRefGoogle Scholar
  74. Lou, B., Liao, X.L., Wu, M.P., Cheng, P.F., Yin, C.Y., Fei, Z., 2005. High-density lipoprotein as a potential carrier for delivery of a lipophilic antitumoral drug into hepatoma cells. World J. Gastroenterol., 11:954–959.PubMedGoogle Scholar
  75. Maeda, S., Abe, A., Seishima, M., Makino, K., Noma, A., Kawade, M., 1989. Transient changes of serum lipoprotein(a) as an acute phase protein. Atherosclerosis, 78(2–3):145–150. [doi:10.1016/0021-9150(89)90218-9]PubMedCrossRefGoogle Scholar
  76. Malaguarnera, M., Trovato, G., Restuccia, S., Giugno, I., Franze, C.M., Receputo, G., Siciliano, R., Motta, M., Trovato, B.A., 1994. Treatment of nonresectable hepatocellular carcinoma: review of the literature and meta-analysis. Adv. Ther., 11:303–319.PubMedGoogle Scholar
  77. Malaguarnera, M., Giugno, I., Trovato, B.A., Panebianco, M.P., Restuccia, N., Ruello, P., 1996. Lipoprotein(a) in cirrhosis. A new index of liver functions? Curr. Med. Res. Opin., 13:479–485.PubMedCrossRefGoogle Scholar
  78. Malmendier, C.L., Lontie, J.F., Mathe, D., Adam, R., Bismuth, H., 1992. Lipid and apolipoprotein changes after orthotopic liver transplantation for end-stage liver diseases. Clin. Chim. Acta, 209(3):169–177. [doi:10.1016/0009-8981(92)90165-M]PubMedCrossRefGoogle Scholar
  79. Marques-Vidal, P., Azema, C., Collet, X., Vieu, C., Chap, H., Perret, B., 1994. Hepatic lipase promotes the uptake of HDL esterified cholesterol by the perfused rat liver: a study using reconstituted HDL particles of defined phospholipid composition. J. Lipid. Res., 35:373–384.PubMedGoogle Scholar
  80. Matsuura, T., Koga, S., Ibayashi, H., 1988. Increased proportion of proapolipoprotein A-I in HDL from patients with liver cirrhosis and hepatitis. Gastroenterol. Jpn., 23:394–400.PubMedGoogle Scholar
  81. Mendez, A.J., Oram, J.F., Bierman, E.L., 1991. Protein kinase C as a mediator of high density lipoprotein receptor-dependent efflux of intracellular cholesterol. J. Biol. Chem., 266:10104–10111.PubMedGoogle Scholar
  82. Mermier, P., Baker, N., 1974. Flux of free fatty acids among host tissues, ascites fluid, and Ehrlich ascites carcinoma cells. J. Lipid. Res., 15:339–351.PubMedGoogle Scholar
  83. Miura, Y., Ono, K., Okauchi, R., Yagasaki, K., 2004. Inhibitory effect of coffee on hepatoma proliferation and invasion in culture and on tumor growth, metastasis and abnormal lipoprotein profiles in hepatoma-bearing rats. J. Nutr. Sci. Vitaminol. (Tokyo), 50:38–44.Google Scholar
  84. Montaguti, U., Sangiorgi, Z., Descovich, G.C., 1975. The liver and abnormal lipoproteins. Minerva. Med., 66: 3428–3437.PubMedGoogle Scholar
  85. Motta, M., Giugno, I., Ruello, P., Pistone, G., Di Fazio, I., Malaguarnera, M., 2001. Lipoprotein(a) behaviour in patients with hepatocellular carcinoma. Minerva. Med., 92:301–305.PubMedGoogle Scholar
  86. Mulcahy, J.V., Riddell, D.R., Owen, J.S., 2004. Human scavenger receptor class B type II (SR-BII) and cellular cholesterol efflux. Biochem. J., 377:741–747.PubMedGoogle Scholar
  87. Nissen, N.N., Martin, P., 2002. Hepatocellular carcinoma: the high-risk patient. J. Clin. Gastroenterol., 35(5):S79–S85. [doi:10.1097/00004836-200211002-00003]PubMedCrossRefGoogle Scholar
  88. Ockner, R.K., Kaikaus, R.M., Bass, N.M., 1993. Fatty-acid metabolism and the pathogenesis of hepatocellular carcinoma: review and hypothesis. Hepatology, 18(3): 669–676. [doi:10.1002/hep.1840180327]PubMedCrossRefGoogle Scholar
  89. Okuno, K., Jinnai, H., Lee, Y.S., Nakamura, K., Hirohata, T., Shigeoka, H., Yasutomi, M., 1995. A high level of prostaglandin E2 (PGE2) in the portal vein suppresses liver-associated immunity and promotes liver metastases. Surg. Today, 25(11):954–958. [doi:10.1007/BF00312380]PubMedCrossRefGoogle Scholar
  90. Ooi, K., Shiraki, K., Sakurai, Y., Morishita, Y., Nobori, T., 2005. Clinical significance of abnormal lipoprotein patterns in liver diseases. Int. J. Mol. Med., 15:655–660.PubMedGoogle Scholar
  91. Palut, D., 1997. Proliferation of peroxisomes and the hepatocarcinogenic process. Rocz. Panstw. Zakl. Hig., 48:1–11.PubMedGoogle Scholar
  92. Pangburn, S.H., Newton, R.S., Chang, C.M., Weinstein, D.B., Steinberg, D., 1981. Receptor-mediated catabolism of homologous low density lipoproteins in cultured pig hepatocytes. J. Biol. Chem., 256:3340–3347.PubMedGoogle Scholar
  93. Parkin, D.M., Bray, F., Ferlay, J., Pisani, P., 2001. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer, 94(2):153–156. [doi:10.1002/ijc.1440]PubMedCrossRefGoogle Scholar
  94. Perletti, G., Tessitore, L., Sesca, E., Pani, P., Dianzani, M.U., Piccinini, F., 1996. Epsilon PKC acts like a marker of progressive malignancy in rat liver, but fails to enhance tumorigenesis in rat hepatoma cells in culture. Biochem. Biophys. Res. Commun., 221(3):688–691. [doi:10.1006/bbrc.1996.0657]PubMedCrossRefGoogle Scholar
  95. Phillips, G.B., 1960. The lipid composition of serum in patients with liver disease. J. Clin. Invest., 39:1639–1650.PubMedGoogle Scholar
  96. Popescu, I., Simionescu, M., Tulbure, D., Sima, A., Catana, C., Niculescu, L., Hancu, N., Gheorghe, L., Mihaila, M., Ciurea, S., Vidu, V., 2003. Homozygous familial hypercholesterolemia: specific indication for domino liver transplantation. Transplantation, 76(9):1345–1350. [doi:10.1097/01.TP.0000093996.96158.44]PubMedCrossRefGoogle Scholar
  97. Ramesh, G., Das, U.N., 1995. Effect of dietary fat on diethyl-nitrosamine induced hepatocarcinogenesis in Wistar rats. Cancer Lett., 95(1–2):237–245. [doi:10.1016/0304-3835(95)03896-5]PubMedCrossRefGoogle Scholar
  98. Rinninger, F., Mann, W.A., Kaiser, T., Ahle, S., Meyer, N., Greten, H., 1998. Hepatic lipase mediates an increase in selective uptake of high-density lipoprotein-associated cholesteryl esters by human Hep 3B hepatoma cells in culture. Atherosclerosis, 141(2):273–285. [doi:10.1016/S0021-9150(98)00181-6]PubMedCrossRefGoogle Scholar
  99. Rothblat, G.H., Phillips, M.C., 1986. Cholesterol efflux: mechanism and regulation. Adv. Exp. Med. Biol., 201:195–204.PubMedGoogle Scholar
  100. Rubies-Prat, J., Masana, L., Masdeu, S., Nubiola, A.R., Chacon, P., 1983. Hypercholesterolemia associated with hepatocarcinoma. Med. Clin. (Barc), 80:175–176.Google Scholar
  101. Samonakis, D.N., Koutroubakis, I.E., Sfiridaki, A., Malliraki, N., Antoniou, P., Romanos, J., Kouroumalis, E.A., 2004. Hypercoagulable states in patients with hepatocellular carcinoma. Dig. Dis. Sci., 49(5):854–858. [doi:10.1023/B:DDAS.0000030099.13397.28]PubMedCrossRefGoogle Scholar
  102. Santamarina-Fojo, S., Haudenschild, C., Amar, M., 1998. The role of hepatic lipase in lipoprotein metabolism and atherosclerosis. Curr. Opin. Lipidol., 9:211–219. [doi:10.1097/00041433-199806000-00005]PubMedCrossRefGoogle Scholar
  103. Sherlock, D.S., 1995. Alcoholic liver disease. Lancet, 345(8944):227–229. [doi:10.1016/S0140-6736(95)90226-0]PubMedCrossRefGoogle Scholar
  104. Sherlock, S., Dooley, I., 1993. Disease of the Liver and Biliary System, 9th Ed. Kubik Fine Books Ltd., USA, p.503–531.Google Scholar
  105. Shi, J., Zhu, L., Liu, S., Xie, W.F., 2005. A meta-analysis of case-control studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma in China. Br. J. Cancer, 92(5):607–612. [doi:10.1038/sj.bjc.6602333]PubMedCrossRefGoogle Scholar
  106. Shiota, G., Okubo, M., Noumi, T., Noguchi, N., Oyama, K., Takano, Y., Yashima, K., Kishimoto, Y., Kawasaki, H., 1999. Cyclooxygenase-2 expression in hepatocellular carcinoma. Hepatogastroenterology, 46:407–412.PubMedGoogle Scholar
  107. Silver, D.L., Wang, N., Tall, A.R., 2000. Defective HDL particle uptake in ob/ob hepatocytes causes decreased recycling, degradation, and selective lipid uptake. J. Clin. Invest., 105:151–159.PubMedGoogle Scholar
  108. Skipski, V.P., Barclay, M., Archibald, F.M., Stock, C.C., 1975. Tumor proteolipids. Prog. Biochem. Pharmacol., 10: 112–134.PubMedGoogle Scholar
  109. Spector, A.A., 1967. The importance of free fatty acid in tumor nutrition. Cancer Res., 27:1580–1586.PubMedGoogle Scholar
  110. Sviridov, D., Fidge, N., 1995. Pathway of cholesterol efflux from human hepatoma cells. Biochim. Biophys. Acta, 1256:210–220.PubMedGoogle Scholar
  111. Sviridov, D., Nestel, P., 2002. Dynamics of reverse cholesterol transport: protection against atherosclerosis. Atherosclerosis, 161(2):245–254. [doi:10.1016/S0021-9150(01)00677-3]PubMedCrossRefGoogle Scholar
  112. Sviridov, D., Sasahara, T., Pyle, L.E., Nestel, P.J., Fidge, N.H., 1997. Antibodies against high-density lipoprotein binding proteins enhance high-density lipoprotein uptake but do not affect cholesterol efflux from rat hepatoma cells. Int. J. Biochem. Cell Biol., 29(4):583–588. [doi:10.1016/S1357-2725(96)00174-4]PubMedCrossRefGoogle Scholar
  113. Tall, A.R., Jiang, X., Luo, Y., Silver, D., 2000. 1999 George Lyman Duff memorial lecture: lipid transfer proteins, HDL metabolism, and atherogenesis. Arterioscler. Thromb. Vasc. Biol., 20:1185–1188.PubMedGoogle Scholar
  114. Tan, K.C., Shiu, S.W., Pang, R.W., Kung, A.W., 1998. Effects of testosterone replacement on HDL subfractions and apolipoprotein A-I containing lipoproteins. Clin. Endocrinol. (Oxf), 48(2):187–194. [doi:10.1046/j.1365-2265.1998.3721211.x]Google Scholar
  115. Tietge, U.J., Boker, K.H., Bahr, M.J., Weinberg, S., Pichlmayr, R., Schmidt, H.H., Manns, M.P., 1998. Lipid parameters predicting liver function in patients with cirrhosis and after liver transplantation. Hepatogastroenterology, 45:2255–2260.PubMedGoogle Scholar
  116. Tracey, K.J., Lowry, S.F., Cerami, A., 1988. Cachectin: a hormone that triggers acute shock and chronic cachexia. J. Infect. Dis., 157:413–420.PubMedGoogle Scholar
  117. Trigatti, B., Rigotti, A., Krieger, M., 2000. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr. Opin. Lipidol., 11(2):123–131. [doi:10.1097/00041433-200004000-00004]PubMedCrossRefGoogle Scholar
  118. Tu, L.C., Chou, C.K., Chen, H.C., Yeh, S.F., 2001. Protein kinase C-mediated tyrosine phosphorylation of paxillin and focal adhesion kinase requires cytoskeletal integrity and is uncoupled to mitogen-activated protein kinase activation in human hepatoma cells. J. Biomed. Sci., 8(2):184–190. [doi:10.1007/BF02256411]PubMedCrossRefGoogle Scholar
  119. von Eckardstein, A., Huang, Y., Assmann, G., 1994. Physiological role and clinical relevance of high-density lipoprotein subclasses. Curr. Opin. Lipidol., 5(6):404–416. [doi:10.1097/00041433-199412000-00003]CrossRefGoogle Scholar
  120. Williams, R.R., Sorlie, P.D., Feinleib, M., Mcnamra, P.M., Kannel, W.B., Dawber, T.R., 1981. Cancer incidence by levels of cholesterol. JAMA, 245(3):247–252. [doi:10.1001/jama.245.3.247]PubMedCrossRefGoogle Scholar
  121. Zhang, S.W., Li, L.D., Lu, F.Z., 1999. Mortality of primary liver cancer in China from 1990 through 1992. Chinese Journal of Oncology, 21:245–249 (in Chinese).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jiang Jing-ting 
    • 1
  • Xu Ning 
    • 2
  • Zhang Xiao-ying 
    • 1
  • Wu Chang-ping 
    • 1
  1. 1.Department of Tumor Biological Treatment, the Third Affiliated HospitalSuzhou UniversityChangzhouChina
  2. 2.Institute of Laboratory MedicineLund UniversityLundSweden

Personalised recommendations