Journal of Zhejiang University SCIENCE B

, Volume 8, Issue 3, pp 181–188 | Cite as

Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean

  • Shamsi Imran Haider 
  • Wei Kang 
  • Jilani Ghulam 
  • Zhang Guo-ping 
Article

Abstract

The effect of Al and Cd on the growth, photosynthesis, and accumulation of Al, Cd and plant nutrients in two soybean genotypes were determined using hydroponic culture. There were six treatments: pH 6.5; pH 4.0; pH 6.5+1.0 μmol/L Cd; pH 4.0+1.0 μmol/L Cd; pH 4.0+150 μmol/L Al; pH 4.0+1.0 μmol/L Cd+150 μmol/L Al. The low pH (4.0) and Al treatments caused marked reduction in root length, shoot height, dry weight, chlorophyll content (SPAD value) and photosynthetic rate. Al-sensitive cv. Zhechun 2 accumulated comparatively more Al and Cd in plants than Al-tolerant cv. Liao 1. Compared with pH 6.5, pH 4.0 resulted in significant increase in Cd and Al concentration in plants. Combined application of Cd and Al enhanced their accumulation in roots, but caused a reduction in shoots. The concentrations of all 10 nutrients (P, K, Ca, Mg, Fe, Mn, Cu, Zn and B), except Mo were also increased when plants were exposed to pH lower than pH 6.5. Al addition caused a reduction in the concentration of most nutrients in plant roots and shoots; but K, Mn and Zn in roots were increased. Treatments with Cd alone or together with Al reduced the concentrations of all the plant nutrients in plants. Al-sensitive genotype Zhechun 2 has lower nutrient concentration than Al-tolerant genotype Liao 1. The current findings imply that Al and Cd are synergistic in their effect on plant growth, physiological traits and nutrient uptake.

Key words

Soybean Cadmium Aluminum Photosynthesis Antagonism 

CLC number

S565.1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaya, M., Takenaka, C., 2001. Effects of aluminum stress on photosynthesis of Quercus glauca Thumb. Plant Soil, 237(1):137–146. [doi:10.1023/A:1013369201003]CrossRefGoogle Scholar
  2. Chen, H.M., Zheng, C.R., Wang, S.Q., Tu, C., 2000. Combined pollution and pollution index of heavy metals in red soil. Pedosphere, 10(2):117–124.Google Scholar
  3. Dalla Vecchia, F., La Rocca, N., Moro, I., de Faveri, S., Andreoli, C., Rascio, N., 2005. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci., 168(2):329–338. [doi:10.1016/j.plantsci.2004.07.025]CrossRefGoogle Scholar
  4. Delhaize, E., Ryan, P.R., 1995. Aluminum toxicity and tolerance in plants. Plant Physiol., 107(2):315–321.PubMedGoogle Scholar
  5. Fernandes, J.C., Henriques, F.S., 1991. Biochemical, physiological and structural effects of excess copper in plants. Bot. Rev., 57(3):246–273.Google Scholar
  6. Foy, C.D., 1984. Physiological Effects of Hydrogen, Aluminum and Manganese Toxicities in Acid Soil. In: Pearson, R.W., Adams, F. (Eds.), Soil Acidity and Liming. Amer. Soc. Agronomy, Wisconsin, p.57–97.Google Scholar
  7. Foy, C.D., 1988. Plant adaptation to acid, aluminum-toxic soils. Commun. Soil Sci. Plant Anal., 19(7–12):959–987.Google Scholar
  8. Foy, C.D., 1992. Soil chemical factors limiting plant root growth. Adv. Soil Sci., 19:97–149.Google Scholar
  9. Grifferty, A., Barrington, S., 2000. Zine uptake by young wheat plants under two transpiration regimes. J. Environ. Qual., 29(2):443–446.CrossRefGoogle Scholar
  10. Guo, T.R., Zhang, G.P., Lu, W.Y., Wu, H.P., Wu, F.B., Chen, J.X., Zhou, M.X., 2003. Effect of Al on dry matter accumulation and Al and nutrients in barleys differing in Al tolerance. Plant Nutr. Fert. Sci., 9(3):324–330 (in Chinese).Google Scholar
  11. Guo, T.R., Zhang, G.P., Zhou, M.X., Wu, F.B., Chen, J.X., 2004. Effect of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with difference Al tolerance. Plant Soil, 258(1):241–248. [doi:10.1023/B:PLSO.0000016554.87519.d6]CrossRefGoogle Scholar
  12. Kahle, H., 1993. Response of roots of trees to heavy metals. Environ. Exp. Bot., 33(1):99–119. [doi:10.1016/0098-8472(93)90059-O]CrossRefGoogle Scholar
  13. Kidd, P.S., Proctor, J., 2000. Effect of aluminum on the growth and mineral composition of Betula pendula Roth. J. Exp. Bot., 51(347):1057–1066. [doi:10.1093/jexbot/51.347.1057]PubMedCrossRefGoogle Scholar
  14. Lagriffoul, A., Mocquot, B., Mench, M., Vangronsveld, J., 1998. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil, 200(2):241–250. [doi:10.1023/A:1004346905592]CrossRefGoogle Scholar
  15. Larbi, A., Morales, F., Abadia, A., Gogorcena, Y., Lucena, J., Abadia, J., 2002. Effects of Cd and Pb in sugar beet plants grown in nutrition solution: induced Fe deficiency and growth inhibition. Funct. Plant Biol., 29(12):1453–1464. [doi:10.1071/FP02090]CrossRefGoogle Scholar
  16. Lidon, F.C., Barreiro, M.G., 2002. An overview into aluminum toxicity in maize. Bulg. J. Plant Physiol., 28(3–4):96–112.Google Scholar
  17. Lidon, F.C., Barreiro, M.G., Ramalho, J.C., Lauriano, J.A., 1999. Effects of Al toxicity on nutrient accumulation in maize shoots. Implications on photosynthesis. J. Plant Nutr., 22(2):397–416.Google Scholar
  18. Lidon, F.C., Azinheira, H.G., Barreiro, M.G., 2000. Al toxicity in maize: modulation of biomass production and nutrients uptake and translocation. J. Plant Nutr., 23(2):151–160.Google Scholar
  19. Ma, J.F., Hiradate, S., Nomoto, K., Iwashita, T., Matsumoto, H., 1997. Internal detoxification mechanism of Al in Hydrangea. Plant Physiol., 113(4):1033–1039.PubMedGoogle Scholar
  20. Mantovi, P., Bonazzi, G., Maestri, E., Marmiroli, N., 2003. Accumulation of copper and zine from liquid manure in agricultural soils and crop plants. Plant Soil, 250(2):249–257. [doi:10.1023/A:1022848131043]CrossRefGoogle Scholar
  21. Marienfeld, S., Schmohl, N., Klein, M., Schröder, W.H., Kuhn, A.J., Horst, W.J., 2000. Localisation of aluminium in root tips of Zea mays and Vicia faba. J. Plant Physiol., 156(5–6):666–671.Google Scholar
  22. Mazen, A.M.A., 2004. Accumulation of four metals in tissues of Corchorus olitorius and possible mechanisms of their tolerance. Biologia Plantarum, 48(2):267–272. [doi:10.1023/B:BIOP.0000033455.11107.97]CrossRefGoogle Scholar
  23. Onac, S., Trifu, M., 2002. Accumulation of some heavy metals from mine spoils by soybean plants. Studia Universitatis Babeş-Bolyai, Biologia, 47(1):61–70.Google Scholar
  24. Ruano, A., Barcelo, J., Poschenrieder, C., 1987. Zinc toxicity-induced variation of mineral element composition in hydroponically grown bush bean plants. J. Plant Nutr., 10(4):373–384.Google Scholar
  25. Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., del Rio, L.A., 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot., 52(364):2115–2126.PubMedGoogle Scholar
  26. Sanità di Toppi, L., Gabbrielli, R., 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41(2):105–130. [doi:10.1016/S0098-8472(98)00058-6]CrossRefGoogle Scholar
  27. Shah, K., Dubey, R.S., 1997. Effect of cadmium on proline accumulation and ribonublease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol. Plant, 40(1):121–130. [doi:10.1023/A:1000956803911]CrossRefGoogle Scholar
  28. Silva, J.R., Smyth, T.J., Moxley, D.F., Carter, T.E., Allen, N.S., Rufty, T.W., 2000. Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol., 123(2):543–552. [doi:10.1104/pp.123.2.543]PubMedCrossRefGoogle Scholar
  29. Simon, L., Smalley, T.J., Jones, J.B., Lasseigne, F.T., 1994. Aluminum toxicity in tomato. Part 1. Growth and mineral nutrition. J. Plant Nutr., 17(2&3):293–306.CrossRefGoogle Scholar
  30. Trivedi, S., Erdei, L., 1992. Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influxand translocation of K+ in wheat of low and high K status. Physiologia Plantarum, 84(1):94–100. [doi:10.1034/j.1399-3054.1992.840115x]CrossRefGoogle Scholar
  31. Wu, F.B., Zhang, G.P., 2002. Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J. Plant Nutr., 25(6):1163–1173. [doi:10.1081/PLN-120004380]CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Shamsi Imran Haider 
    • 1
  • Wei Kang 
    • 1
  • Jilani Ghulam 
    • 2
  • Zhang Guo-ping 
    • 1
  1. 1.Department of AgronomyZhejiang UniversityHangzhouChina
  2. 2.School of Environment and Resource SciencesZhejiang UniversityHangzhouChina

Personalised recommendations