Journal of Zhejiang University SCIENCE B

, Volume 8, Issue 2, pp 88–97 | Cite as

Application of cDNA array for studying the gene expression profile of mature appressoria of Magnaporthe grisea

  • Jin Qing-chao 
  • Dong Hai-tao 
  • Peng You-liang 
  • Chen Bao-shan 
  • Shao Jing 
  • Deng Ye 
  • Dai Cheng-en 
  • Fang Yong-qi 
  • Lou Yi-chun 
  • Li You-zhi 
  • Li De-bao 
Article

Abstract

Appressorium is an infection structure of the phytopathogenic fungus Magnaporthe grisea. Analysis of gene expression profiles of appressorium development provides insight into the molecular basis of pathogenicity and control of this fungal plant disease. A cDNA array representing 2927 unique genes based on a large EST (expressed sequence tag) database of M. grisea strain Y34 was constructed and used to profile the gene expression patterns at mycelium and appressorium maturation stages. Compared with mycelia, 55 up-regulated and 22 down-regulated genes were identified in mature appressoria. Among 77 genes, 16 genes showed no similarity to the genome sequences of M. grisea. A novel homologue of peptidyl-prolyl cis-trans isomerase was found to be expressed at low-level in mature appressoria of M. grisea. The results indicated that the genes such as pyruvate carboxylase, phospholipid metabolism-related protein and glyceraldehyde 3-phosphate dehydrogenase involved in gluconeogenesis, lipid metabolism and glycolysis, showed differential expression in mature appressoria. Furthermore, genes such as PTH11, beta subunit of G protein and SGT1 involved in cell signalling, were expressed differentially in mature appressoria. Northern blot analysis was used to confirm the cDNA array results.

Key words

Magnaporthe grisea Mature appressoria cDNA array Gene expression profile 

CLC number

Q949.32 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banno, S., Kimura, M., Tokai, T., Kasahara, S., Higa-Nishiyama, A., Takahashi-Ando, N., Hamamoto, H., Fujimura, M., Staskawicz, B.J., Yamaguchi, I., 2003. Cloning and characterization of genes specifically expressed during infection stages in the rice blast fungus. FEMS Microbiol. Lett., 222(2):221–227.PubMedGoogle Scholar
  2. de Jong, J.C., McCormack, B.J., Smirnoff, N., Talbot, N.J., 1997. Glycerol generates turgor in rice blast. Nature, 389(6648):244–245. [doi:10.1038/38418]CrossRefGoogle Scholar
  3. Dean, R.A., 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol., 35(1):211–234. [doi:10.1146/annurev.phyto.35.1.211]PubMedCrossRefGoogle Scholar
  4. Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H., et al., 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434(7036):980–986. [doi:10.1038/nature03449]PubMedCrossRefGoogle Scholar
  5. Delgado-Jarana, J., Martínez-Rocha, A.L., Roldán-Rodriguez, R., Roncero, M.I., Di Pietro, A., 2005. Fusarium oxysporum G-protein beta subunit Fgbl regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genet. Biol., 42(1):61–72. [doi:10.1016/j.fgb.2004.10.001]PubMedCrossRefGoogle Scholar
  6. Deng, Y., Dong, H., Jin, Q., Dai, C., Fang, Y., Liang, S., Wang, K., Shao, J., Lou, Y., Shi, W., et al., 2006. Analysis of expressed sequence tag data and gene expression profiles involved in conidial germination of Fusarium oxysporum. Appl. Environ. Microbiol., 72(2):1667–1671. [doi:10.1128/AEM.72.2.1667-1671.2006]PubMedCrossRefGoogle Scholar
  7. DeZwaan, T.M., Carroll, A.M., Valent, B., Sweigard, J.A., 1999. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell, 11(10):2013–2030. [doi:10.1105/tpc.11.10.2013]PubMedCrossRefGoogle Scholar
  8. Dong, H.T., Li, W., Alvarez, S.P., Luo, H., Deng, Y., Jin, Q., Dai, C., Montero, D.C., Fang, Y., Shao, J., et al., 2005. Large-scale identification of ESTs from Nicotiana tabacum by normalized cDNA library sequencing. Med. Hypotheses Res., 2(3):481–496.Google Scholar
  9. Dubacq, C., Guerois, R., Courbeyrette, R., Kitagawa, K., Mann, C., 2002. Sgtlp contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyrlp/Cdc35p in budding yeast. Eukaryot. Cell, 1(4):568–582. [doi:10.1128/EC.1.4.568-582.2002]PubMedCrossRefGoogle Scholar
  10. Ebbole, D.J., Jin, Y., Thon, M., Pan, H., Bhattarai, E., Thomas, T., Dean, R., 2004. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. Mol. Plant Microbe Interact., 17(12):1337–1347.PubMedGoogle Scholar
  11. Guo, X., Dong, H., Zheng, K., Luo, H., Tan, X., Fang, Y., Wang, Y., Deng, Y., Dai, C., Luo, Y., et al., 2005. Gene expression profiling under different photoperiod-/thermoconditions in a photoperiod-/thermo-sensitive genic male sterile line of rice (Oryza sativa L.). Chin. Sci. Bull., 50(22):2509–2513 (in Chinese).Google Scholar
  12. Irie, T., Matsumura, H., Terauchi, R., Saitoh, H., 2003. Serial analysis of gene expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol. Genet. Genomics, 270(2):181–189. [doi:10.1007/s00438-003-0911-6]PubMedCrossRefGoogle Scholar
  13. Jantasuriyarat, C., Gowda, M., Haller, K., Hatfield, J., Lu, G., Stahlberg, E., Zhou, B., Li, H., Kim, H., Yu, Y., et al., 2005. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiol., 138(1):105–115. [doi:10.1104/pp.104.055624]PubMedCrossRefGoogle Scholar
  14. Kamakura, T., Xiao, J.Z., Choi, W.B., Kochi, T., Yamaguchi, S., Teraoka, T., Yamaguchi, I., 1999. cDNA subtractive cloning of genes expressed during early stage of appressorium formation by Magnaporthe grisea. Biosci. Biotechnol. Biochem., 63(8):1407–1413. [doi:10.1271/bbb.63.1407]CrossRefGoogle Scholar
  15. Lee, Y.H., Dean, R.A., 1994. Hydrophobicity of contact surface induces appressorium formation in Magnaporthe griesa. FEMS Microbiol. Lett., 115(1):71–76. [doi:10.1111/j.1574-6968.1994.tb06616.x]CrossRefGoogle Scholar
  16. Lu, J.P., Liu, T.B., Lin, F.C., 2005. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiol. Lett., 245(1):131–137. [doi:10.1016/j.femsle.2005.02.032]PubMedCrossRefGoogle Scholar
  17. Nishimura, M., Park, G., Xu, J.R., 2003. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol. Microbiol., 50(1):231–243. [doi:10.1046/j.1365-2958.2003.03676x]PubMedCrossRefGoogle Scholar
  18. Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  19. Steensgaard, P., Garre, M., Muradore, I., Transidico, P., Nigg, E.A., Kitagawa, K., Earnshaw, W.C., Faretta, M., Musacchio, A., 2004. Sgt1 is required for human kinetochore assembly. EMBO Rep., 5(6):626–631. [doi:10.1038/sj.embor.7400154]PubMedCrossRefGoogle Scholar
  20. Takano, Y., Choi, W., Mitchell, T.K., Okuno, T., Dean, R.A., 2003. Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Mol. Plant Pathol., 4(5):337–346. [doi:10.1046/j.1364-3703.2003.00182.x]CrossRefGoogle Scholar
  21. Talbot, N.J., 1995. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol., 3(1):9–16. [doi:10.1016/S0966-842X(00)88862-9]PubMedCrossRefGoogle Scholar
  22. Talbot, N.J., 2003. On the trial of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol., 57(1):177–202. [doi:10.1146/annurev.micro.57.030502.090957]PubMedCrossRefGoogle Scholar
  23. Talbot, N.J., Ebbole, D.J., Hamer, J.E., 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5(11):1575–1590. [doi:10.1105/tpc.5.11.1575]PubMedCrossRefGoogle Scholar
  24. Thines, E., Weber, R.W., Talbot, N.J., 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell, 12(9):1703–1718. [doi:10.1105/tpc.12.9.1703]PubMedCrossRefGoogle Scholar
  25. Valent, B., 1990. Rice blast as a model system for plant pathology. Phytopathology, 80(1):33–36.Google Scholar
  26. Viaud, M.C., Balhadere, P.V., Talbot, N.J., 2002. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell, 14(4):917–930. [doi:10.1105/tpc.010389]PubMedCrossRefGoogle Scholar
  27. Wang, Z.Y., Thornton, C.R., Kershaw, M.J., Debao, L., Talbot, N.J., 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol. Microbiol., 47(6):1601–1612. [doi:10.1046/j.1365-2958.2003.03412.x]PubMedCrossRefGoogle Scholar
  28. Zheng, F., Yang, Q., Zhao, Z., Li, J., 1998. Variability of pathogenicity of Pyricularia oryzae. J. Yunnan Agric. Univ., 13(1):20–24 (in Chinese).Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jin Qing-chao 
    • 1
  • Dong Hai-tao 
    • 1
  • Peng You-liang 
    • 2
  • Chen Bao-shan 
    • 3
  • Shao Jing 
    • 1
  • Deng Ye 
    • 1
  • Dai Cheng-en 
    • 1
  • Fang Yong-qi 
    • 1
  • Lou Yi-chun 
    • 1
  • Li You-zhi 
    • 3
  • Li De-bao 
    • 1
  1. 1.Bioinformatics and Gene Network Research Group, School of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Molecular Plant Pathology, Ministry of AgricultureChina Agricultural UniversityBeijingChina
  3. 3.Laboratory of Subtropical Bioresource Conservation and UtilizationGuangxi UniversityNanningChina

Personalised recommendations