Journal of Zhejiang University-SCIENCE A

, Volume 8, Issue 11, pp 1872–1878 | Cite as

Study on source rock potential and source rocks spatial distribution in the Manghan Faulted Sag, Kailu Basin

  • Yin Zhi-jun 
  • Zhang Feng 
  • Zou Hua-yao 
  • Wang Wei-xing 
  • Zhou Lian-min 
  • Chen Hua-lin 


Manghan Faulted Sag is an exploratory target area in Kailu Basin. In order to determine its exploration prospect, the effectiveness of its source rocks is evaluated by organic geochemical behavior analysis of the samples, and their distributions are predicted using trace integration seismic inversion technology. Studies on their organic matter abundance, type and maturity indicate that the source rocks in the Sag have great generating potentials. Furthermore, it is found that, based on the spatial distribution predication, the source rocks in the Sag are well developed. Therefore, the Sag has a promising prospect for exploration.

Key words

Source rocks Hydrocarbon accumulation Organic matter Manghan Faulted Sag 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albbecht, P., Ourission, G., 1969. Diagenesis des hydrocarbures satures dans une serie sedimentaire epaisse (Douala, Cameroum). Geochimica et Cosmochimica Acta, 33(1):138–142. [doi:10.1016/0016-7037(69)90097-0]CrossRefGoogle Scholar
  2. Banerjee, A., Pahari, S., Jha, M., Sinha, A.K., Jain, A.K., Kumar, N., Thomas, N.J., Misra, K.N., Chandra, K., 2002. The effective source rocks in the Cambay basin, India. AAPG Bulletin, 86(3):433–456.Google Scholar
  3. Behar, F., Beaumont, V., Penteado, B.H.L., 2001. Rock-Eval 6 technology: Performances and developments. Oil and Gas Science and Technology, 56(2):111–134. [doi:10.2516/ogst:2001013]CrossRefGoogle Scholar
  4. Bons, P.D., van Milligen, B.P., 2001. New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks. Geology, 29(10):919–922. [doi:10.1130/0091-7613(2001)029〈0919:NETMSO〉2.0.CO;2]CrossRefGoogle Scholar
  5. Carroll, A.R., Bohacs, K.M., 2001. Lake-type controls on petroleum source rock potential in nonmarine basins. AAPG Bulletin, 85(6):1033–1053.Google Scholar
  6. Hao, F., Zou, H.Y., Fang, Y., 2005. The difficulties and frontiers of subtle oil/gas reservoir research. Earth Science Frontiers, 12(4):481–488 (in Chinese).Google Scholar
  7. Huang, D.F., Li, J.C., 1982. Hydrocarbon Generation of China Continental Faces. Petroleum Industry Press, Beijing, p. 175–179 (in Chinese).Google Scholar
  8. Isaksen, G.H., Ledje, K.H.I., 2001. Source rock quality and hydrocarbon migration pathways within the greater Utsira High area, Viking Graben, Norwegian North Sea. AAPG Bulletin, 85(5):861–883.Google Scholar
  9. Jiang, Z.X., Pang, X.Q., Jin, Z.J., Zhou, H.Y., Wang, X.D., 2002. Threshold control over hydrocarbons and its application in distinguishing valid source rock. Earth Science-Journal of China University of Geosciences, 27(6):689–695 (in Chinese).Google Scholar
  10. Johnson, C.L., Greene, T.J., Zinniker, D.A., Moldowan, J.M., Hendrix, M.S., Carroll, A.R., 2003. Geochemical characteristics and correlation of oil and nonmarine source rocks from Mongolia. AAPG Bulletin, 87(5): 817–846. [doi:10.1306/12170201073]CrossRefGoogle Scholar
  11. Li, Q.Z., 1993. The Way to Obtain a Better Resolution in Seismic Prospecting—A Systematical Analysis of High Resolution Seismic Exploration. Petroleum Industry Press, Beijing, p. 121–133 (in Chinese).Google Scholar
  12. Li, J.C., Huang, D.F., Zhang, D.J., et al., 1988. Hydrocarbon Resources Evaluation in Lujiapu Depression of Kailu Basin. Exploration & Development Research Institute, PetroChina Liaohe Oilfield Company, Panjin (in Chinese).Google Scholar
  13. Lin, C., Eriksson, K., Li, S., Wan, Y., Ren, J., Zhang, Y., 2001. Sequence architecture, depositional systems, and controls on development of Lacustrine Basin fills in part of the Erlian Basin, Northeast China. AAPG Bulletin, 85(11): 2017–2043. [doi:10.1306/8626D0DB-173B-11D7-8645000102C1865D]Google Scholar
  14. Liu, K.Q., Jin, Z.J., 2004. Ordovician petroleum accumulation system in Tazhong low uplift of Tarim Basin. Earth Science-Journal of China University of Geosciences, 29(4):489–494 (in Chinese with English abstract).Google Scholar
  15. Louis, M., 1964. Etudes Geochimiques sur les “Schisters cartons” du Toarcian du Basin de Paris. In: Hosbson, G.B., Louis, M.C. (Eds.), Advances in Organic Geochemistry. Pergamon Press, New York, p. 84–95.Google Scholar
  16. Lu, J.M., 1993. Mechanics Seismic Exploration. China University of Petroleum Press, Dongying, p.189–222 (in Chinese).Google Scholar
  17. Magoon, L.B., Dow, W.G., 1994. The petroleum system from source to trap. AAPG Memoir, 60:3–24.Google Scholar
  18. Mukhopadhyay, P.K., Dow, W.G. (Eds.), 1994. Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations. ACS Symposium Series, Vol. 570. Oxford University Press.Google Scholar
  19. Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide. Cambridge University Press, UK.Google Scholar
  20. Petersen, H.I., Bojesen-Koefoed, J.A., Nytoft, H.P., 2002. Source rock evaluation of Middle Jurassic coals, northeast Greenland, by artificial maturation: aspects of petroleum generation from coal. AAPG Bulletin, 86(2):233–256.Google Scholar
  21. Philippi, G.T., 1965. On the depth, time and mechanism of petroleum generation. Geochimica et Cosmochimica Acta, 29(9):1021–1049. [doi:10.1016/0016-7037(65)90101-8]CrossRefGoogle Scholar
  22. Rabbani, A.R., Kamali, M.R., 2005. Source rock evaluation and petroleum geochemistry, offshore SW Iran. Journal of Petroleum Geology, 28(4):413–428.CrossRefGoogle Scholar
  23. Robison, C.R., van Gijzel, P., Darnell, L.M., 2000. A thermal maturity indicator for petroleum source rocks. International Journal of Coal Geology, 43(1–4):83–103. [doi:10.1016/S0166-5162(99)00055-5]CrossRefGoogle Scholar
  24. Stein, R., 2007. Upper Cretaceous/lower Tertiary black shales near the North Pole: Organic-carbon origin and source-rock potential. Marine and Petroleum Geology, 24(2):67–73. [doi:10.1016/j.marpetgeo.2006.10.002]CrossRefGoogle Scholar
  25. Yang, Y.T., Zhang, B.M., Zhao, C.Y., Xu, T.G., 2004. Mesozoic source rocks and petroleum systems of the northeastern Qaidam basin, northwest China. AAPG Bulletin, 88(1):115–125. [doi:10.1306/09100303027]CrossRefGoogle Scholar
  26. Younes, M.A., 2005. Petroleum geochemistry and potential source rock correlation in the Shushan Basin, North Western Desert, Egypt. Petroleum Science and Technology, 23(5–6):507–536. [doi:10.1081/LFT-200031092]CrossRefGoogle Scholar
  27. Zhao, W.Z., He, D.F., Chi, Y.L., 2001. Major characteristics and exploration technology of multi-sour petroleum systems in China. ACTA Petrolei Sinica, 22(1):6–13 (in Chinese).Google Scholar
  28. Zhou, X.X., 2000. The petroleum reservoir-forming characteristics of the composite superimposed basin—An example from Tarim Basin. Earth Science Frontiers, 7(3):39–47 (in Chinese).Google Scholar
  29. Zhu, F.B., 2002. Research on characteristic of source rock and immature oil distribution in Western Depression, Liaohe Basin. Earth Science-Journal of China University of Geosciences, 27(1):25–29 (in Chinese).Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yin Zhi-jun 
    • 1
  • Zhang Feng 
    • 2
    • 3
  • Zou Hua-yao 
    • 1
  • Wang Wei-xing 
    • 4
  • Zhou Lian-min 
    • 1
  • Chen Hua-lin 
    • 5
  1. 1.Faculty of Resource and Information TechnologyChina University of PetroleumBeijingChina
  2. 2.School of Energy ResourcesChina University of GeosciencesBeijingChina
  3. 3.Institute of Exploration and ExploitationDagang OilfieldTianjinChina
  4. 4.No.1 Production PlantQinghai Oilfield Branch CompanyDunhuangChina
  5. 5.Research Institute of Geological Exploration and DevelopmentSichuan Petroleum Company, CNPCChengduChina

Personalised recommendations