Journal of Zhejiang University-SCIENCE A

, Volume 8, Issue 11, pp 1740–1745 | Cite as

Stress analysis of anisotropic thick laminates in cylindrical bending using a semi-analytical approach



Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is derived from the basic equations of elasticity based on the state space concept. Then, the differential quadrature (DQ) technique is introduced to discretize the longitudinal domain of the plate so that a series of ordinary differential state equations are obtained at the discrete points. Meanwhile, the edge constrained conditions are handled directly using the stress and displacement components without the Saint-Venant principle. The thickness domain is solved analytically based on the state space formalism along with the continuity conditions at interfaces. The present method is validated by comparing the results to the exact solutions of Pagano’s problem. Numerical results for fully clamped thick laminates are presented, and the influences of ply angle on stress distributions are discussed.

Key words

Semi-analytical elasticity solution State-space-based differential quadrature method (SSDQM) Angle-ply laminates Cylindrical bending 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellman, R., Kashef, B.G., Casti, J., 1972. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. Journal of Computational Physics, 10(1):40–52. [doi:10.1016/0021-9991(72)90089-7]MathSciNetCrossRefMATHGoogle Scholar
  2. Bert, C.W., Malik, M., 1996. Differential quadrature method in computational mechanics: A review. Applied Mechanics Review, 49(1):1–28.CrossRefGoogle Scholar
  3. Bian, Z.G., Chen, W.Q., Lim, C.W., Zhang, N., 2005. Analytical solutions for single-and multi-span functionally graded plates in cylindrical bending. International Journal of Solids and Structures, 42(24–25):6433–6456. [doi:10.1016/j.ijsolstr.2005.04.032]CrossRefMATHGoogle Scholar
  4. Chen, W.Q., Lee, K.Y., 2004a. On free vibration of cross-ply laminates in cylindrical bending. Journal of Sound and Vibration, 273(3):667–676. [doi:10.1016/j.jsv.2003.08.003]CrossRefGoogle Scholar
  5. Chen, W.Q., Lee, K.Y., 2004b. Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method. Composite Structures, 64(3–4):275–283. [doi:10.1016/j.compstruct.2003.08.010]CrossRefGoogle Scholar
  6. Chen, W.Q., Bian, Z.G., Ding, H.J., 2003a. Three-dimensional analysis of a thick FGM rectangular plate in thermal environment. Journal of Zhejiang University SCIENCE, 4(1):1–7.CrossRefGoogle Scholar
  7. Chen, W.Q., Lv, C.F., Bian, Z.G., 2003b. Elasticity solution for free vibration of laminated beams. Composite Structures, 62(1):75–82. [doi:10.1016/S0263-8223(03)00086-2]CrossRefGoogle Scholar
  8. Chen, W.Q., Lv, C.F., Bian, Z.G., 2004a. Free vibration analysis of generally laminated beams via state-space-based differential quadrature. Composite Structures, 63(3–4):417–425. [doi:10.1016/S0263-8223(03)00190-9]CrossRefGoogle Scholar
  9. Chen, W.Q., Ying, J., Cai, J.B., Ye, G.R., 2004b. Benchmark solution of imperfect angle-ply laminated rectangular plates in cylindrical bending with surface piezoelectric layers as actuator and sensor. Computers and Structures, 82(22):1773–1784. [doi:10.1016/j.compstruc.2004.05.011]CrossRefGoogle Scholar
  10. Lü, C.F., Huang, Z.Y., Chen, W.Q., 2007. Semi-analytical solutions for free vibration of anisotropic laminated plates in cylindrical bending. Journal of Sound and Vibration, 304(3–5):987–995. [doi:10.1016/j.jsv.2007.03.023]CrossRefGoogle Scholar
  11. Messina, A., 2001. Two generalized higher order theories in free vibration studies of multi-layered plates. Journal of Sound and Vibration, 242(1):125–150. [doi:10.1006/jsvi.2000.3364]CrossRefGoogle Scholar
  12. Messina, A., Soldatos, K.P., 2002. A general vibration model of angle-ply laminated plates that accounts for the continuity of interlaminar stresses. International Journal of Solids and Structures, 39(3):617–635. [doi:10.1016/S0020-7683(01)00169-X]CrossRefMATHGoogle Scholar
  13. Pagano, N.J., 1969. Exact solutions for composite laminates in cylindrical bending. Journal of Composite Materials, 3(3):398–411. [doi:10.1177/002199836900300304]CrossRefGoogle Scholar
  14. Pagano, N.J., 1970. Influence of shear coupling in cylindrical bending of anisotropic laminates. Journal of Composite Materials, 4(3):330–343. [doi:10.1177/002199837000400305]MathSciNetCrossRefGoogle Scholar
  15. Pu, J.P., Zheng, J.J., 2006. Structural dynamic responses analysis applying differential quadrature method. Journal of Zhejiang University SCIENCE A, 7(11):1831–1838. [doi:10.1631/jzus.2006.A1831]CrossRefMATHGoogle Scholar
  16. Shu, C., 2000. Differential Quadrature and Its Application in Engineering. Springer-Verlag, London.CrossRefMATHGoogle Scholar
  17. Shu, C., Richards, B.E., 1992. Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 15(7):791–798. [10.1002/fld.1650150704]CrossRefMATHGoogle Scholar
  18. Shu, X.P., Soldatos, K.P., 2000. Cylindrical bending of angle-ply laminates subjected to different sets of edge boundary conditions. International Journal of Solids and Structures, 37(31):4289–4307. [doi:10.1016/S0020-7683(99)00144-4]CrossRefMATHGoogle Scholar
  19. Vel, S.S., Batra, R.C., 2000. The generalized plane strain deformations of thick anisotropic composite laminated plates. International Journal of Solids and Structures, 37(5):715–733. [doi:10.1016/S0020-7683(99)00040-2]CrossRefMATHGoogle Scholar
  20. Vinson, J.R., Sierakowski, R.L., 2002. The Behavior of Structures Composed of Composite Materials. Kluwer, London.CrossRefMATHGoogle Scholar
  21. Wang, H.Z., Chen, Y.M., Huang, B., 2003. Computation of one-dimensional consolidation of double layered ground using differential quadrature method. Journal of Zhejiang University SCIENCE, 4(2):195–201.CrossRefGoogle Scholar
  22. Yan, W., Chen, W.Q., 2004. Time-dependent response of laminated isotropic strips with viscoelastic interfaces. Journal of Zhejiang University SCIENCE, 5(11):1318–1321. [doi:10.1631/jzus.2004.1318]CrossRefMATHGoogle Scholar
  23. Yan, W., Ying, J., Chen, W.Q., 2007. The behavior of angle-ply laminated cylindrical shells with viscoelastic interfaces in cylindrical bending. Composite Structures, 78(4):551–559. [doi:10.1016/j.compstruct.2005.11.017]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Civil EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Building and ConstructionCity University of Hong KongKowloon, Hong KongChina
  3. 3.Zhejiang Tiandi Environmental Protection Engineering Co., Ltd.HangzhouChina

Personalised recommendations