Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 8, Issue 10, pp 1657–1662 | Cite as

A quadratic programming method for optimal degree reduction of Bézier curves with G1-continuity

Article

Abstract

This paper presents a quadratic programming method for optimal multi-degree reduction of Bézier curves with G1-continuity. The L2 and l2 measures of distances between the two curves are used as the objective functions. The two additional parameters, available from the coincidence of the oriented tangents, are constrained to be positive so as to satisfy the solvability condition. Finally, degree reduction is changed to solve a quadratic problem of two parameters with linear constraints. Applications of degree reduction of Bézier curves with their parameterizations close to arc-length parameterizations are also discussed.

Key words

Degree reduction Bézier curves Optimal approximation G1-continuity Quadratic programming 

CLC number

TP391.72 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, Y.J., 2003. Using Jacobi polynomials for degree reduction of Bézier curves with C k-constraints. Computer Aided Geometric Design, 20(7):423–434. [doi:10.1016/S0167-8396(03)00082-7]MathSciNetCrossRefMATHGoogle Scholar
  2. Ahn, Y.J., Lee, B.G., Park, Y., Yoo, J., 2004. Constrained polynomial degree reduction in the L 2-norm equals best weighted Euclidean approximation of Bézier coefficients. Computer Aided Geometric Design, 21(2):181–191. [doi:10.1016/j.cagd.2003.10.001]MathSciNetCrossRefMATHGoogle Scholar
  3. Costantini, P., Farouki, R.T., Manni, C., Sestini, A., 2001. Computation of optimal composite re-parameterizations. Computer Aided Geometric Design, 18(9):875–897. [doi:10.1016/S0167-8396(01)00071-1]MathSciNetCrossRefMATHGoogle Scholar
  4. Degen, W.L.F., 2005. Geometric Hermite interpolation—in memoriam Josef Hoschek. Computer Aided Geometric Design, 22(7):573–592. [doi:10.1016/j.cagd.2005.06.008]MathSciNetCrossRefMATHGoogle Scholar
  5. Eck, M., 1995. Least squares degree reduction of Bézier curves. Computer-Aided Design, 27(11):845–851. [doi:10.1016/0010-4485(95)00008-9]CrossRefGoogle Scholar
  6. Farin, G., 2001. Curves and Surfaces for CAGD (5th Ed.). Morgan Kaufmann, San Fransisco, p.57–93.Google Scholar
  7. Farouki, R.T., 1997. Optimal parameterizations. Computer Aided Geometric Design, 14(2):153–168. [doi:10.1016/S0167-8396(96)00026-X]MathSciNetCrossRefMATHGoogle Scholar
  8. Gill, P., Murray, W., Wright, M., 1981. Practical Optimization. Academic Press, New York, p.59–203.MATHGoogle Scholar
  9. Lee, B.G., Park, Y., Yoo, J., 2002. Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction. Computer Aided Geometric Design, 19(9):709–718. [doi:10.1016/S0167-8396(02)00164-4]MathSciNetCrossRefGoogle Scholar
  10. Lu, L., Wang, G., 2006a. Optimal multi-degree reduction of Bézier curves with G 1-continuity. J. Zhejiang Univ. Sci. A, 7(Suppl. II):174–180. [doi:10.1631/jzus.2006.AS0174]CrossRefMATHGoogle Scholar
  11. Lu, L., Wang, G., 2006b. Optimal multi-degree reduction of Bézier curves with G 2-continuity. Computer Aided Geometric Design, 23(9):673–683. [doi:10.1016/j.cagd.2006.09.002]MathSciNetCrossRefMATHGoogle Scholar
  12. Pottmann, H., Leopoldseder, S., Hofer, M., 2002. Approximation with Active B-spline Curves and Surfaces. Proc. Pacific Graphics. IEEE Press, Los Alamitos, p.8–25.Google Scholar
  13. Rababah, A., Lee, B.G., Yoo, J., 2006. A simple matrix form for degree reduction of Bézier curves using Chebyshev-Bernstein basis transformations. Appl. Math. Comput., 181(1):310–318. [doi:10.1016/j.amc.2006.01.034]MathSciNetMATHGoogle Scholar
  14. Watkins, M.A., Worsey, A.J., 1988. Degree reduction of Bézier curves. Computer-Aided Design, 20(7):398–405. [doi:10.1016/0010-4485(88)90216-3]CrossRefMATHGoogle Scholar
  15. Zheng, J., Wang, G., 2003. Peturbing Bézier coefficients for best constrained degree reduction in the L 2-norm. Graph. Models, 65(6):351–368. [doi:10.1016/j.gmod.2003.07.001]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Computer Graphics and Image Processing, Department of MathematicsZhejiang UniversityHangzhouChina

Personalised recommendations