Journal of Zhejiang University-SCIENCE A

, Volume 8, Issue 9, pp 1452–1456 | Cite as

Influence of input acoustic power on regenerator’s performance

  • Tang Ke 
  • Huang Zhong-jie 
  • Jin Tao 
  • Bao Rui 
  • Chen Guo-bang 
Article

Abstract

Performance of a pulse tube cooler significantly depends on the efficient operation of its regenerator. Influence of input acoustic power on regenerator’s performance is simulated and analyzed with simple harmonic analysis method. Given regenerator’s dimensions and pressure ratio, there is an optimal input acoustic power for achieving a highest coefficient of performance, due to a compromise between relative time-averaged total energy flux in regenerator and relative acoustic power at regenerator’s cold end. Additionally, optimal dimensions of regenerator are also estimated and presented for different input acoustic powers. The computed optimal diameter obviously increases with increase of input acoustic power, while the optimal length decreases slightly, and as a result, a larger input acoustic power requires a smaller aspect ratio (length over diameter).

Key words

Regenerator Pulse tube cooler Simple harmonic analysis 

CLC number

TB618 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marquardt, E.D., Radebaugh, R., 2000. Pulse tube oxygen liquefier. Advances in Cryogenic Engineering, 45:457–464.Google Scholar
  2. Nam, K., Jeong, S., 2003. Measurement of cryogenic regenerator characteristics under oscillating flow and pulsating pressure. Cryogenics, 43(10–11):575–581. [doi:10.1016/S0011-2275(03)00166-8]CrossRefGoogle Scholar
  3. Nam, K., Jeong, S., 2005. Investigation of oscillating flow friction factor for cryocooler regenerator considering cryogenic temperature effect. Cryogenics, 45(12):733–738. [doi:10.1016/j.cryogenics.2005.07.003]CrossRefGoogle Scholar
  4. Pfotenhauer, J.M., Shi, J.L., Nellis, G.F., 2005. A parametric optimization of a single stage regenerator using REGEN 3.2. Cryocoolers 13:463–470.Google Scholar
  5. Qiu, L.M., He, Y.L., Gan, Z.H., Zhang, X.B., Chen, G.B., 2007. Regenerator performance improvement of a single-stage pulse tube cooler reached 11.1 K. Cryogenics, 47(1):49–55. [doi:10.1016/j.cryogenics.2006.09.004]CrossRefGoogle Scholar
  6. Radebaugh, R., O’Gallagher, A., 2006. Regenerator operation at very high frequencies for microcryocoolers. Advances in Cryogenic Engineering, 51:1919–1928.CrossRefGoogle Scholar
  7. Rawlins, W., Radebaugh, R., Bradley, P.E., Timmerhaus, K.D., 1994. Energy flows in an orifice pulse tube refrigerator. Advances in Cryogenic Engineering, 39:1449–1456.Google Scholar
  8. Swift, G.W., 2002. Thermoacoustics: A Unifying Perspective for some Engines and Refrigerators. Acoustical Society of America Publications, Sewickley, PA.Google Scholar
  9. Swift, G.W., Ward, W.C., 1996. Simple harmonic analysis of regenerators. Journal of Thermophysics and Heat Transfer, 10(4):652–662.CrossRefGoogle Scholar
  10. Wysokinski, T.W., Barclay, J.A., Gschneidner, K.A.Jr., Pecharsky, V.K., Pecharsky, A.O., 2002. Comparative evaluation of erbium and lead regenerator materials for low temperature cryocoolers. Cryogenics, 42(8):463–467. [doi:10.1016/S0011-2275(02)00049-8]CrossRefGoogle Scholar
  11. Zhu, S.W., Matsubara, Y., 2004. A numerical method of regenerator. Cryogenics, 44(2):131–140. [doi:10.1016/j.cryogenics.2003.10.002]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Tang Ke 
    • 1
  • Huang Zhong-jie 
    • 1
  • Jin Tao 
    • 1
  • Bao Rui 
    • 1
  • Chen Guo-bang 
    • 1
  1. 1.Institute of Refrigeration and CryogenicsZhejiang UniversityHangzhouChina

Personalised recommendations