Skip to main content

A new algorithm for computing the convex hull of a planar point set

Abstract

When the edges of a convex polygon are traversed along one direction, the interior of the convex polygon is always on the same side of the edges. Based on this characteristic of convex polygons, a new algorithm for computing the convex hull of a simple polygon is proposed in this paper, which is then extended to a new algorithm for computing the convex hull of a planar point set. First, the extreme points of the planar point set are found, and the subsets of point candidate for vertex of the convex hull between extreme points are obtained. Then, the ordered convex hull point sequences between extreme points are constructed separately and concatenated by removing redundant extreme points to get the convex hull. The time complexity of the new planar convex hull algorithm is O(nlogh), which is equal to the time complexity of the best output-sensitive planar convex hull algorithms. Compared with the algorithm having the same complexity, the new algorithm is much faster.

This is a preview of subscription content, access via your institution.

References

  1. Bhattacharya, B.K., Sen, S., 1997. On a simple, practical, optimal, output-sensitive randomized planar convex hull algorithm. Journal of Algorithms, 25(1):177–193. [doi:10.1006/jagm.1997.0869]

    MathSciNet  Article  MATH  Google Scholar 

  2. Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G., 2004. Space-efficient planar convex hull algorithms. Theor. Computer Sci., 321(1):25–40. [doi:10.1016/j.tcs.2003.05.004]

    MathSciNet  Article  MATH  Google Scholar 

  3. Brönnimann, H., Chan, T.M., 2006. Space-efficient algorithms for computing the convex hull of a simple polygonal line in linear time. Comput. Geom., 34(2):75–82. [doi:10.1016/j.comgeo.2005.11.005]

    MathSciNet  Article  MATH  Google Scholar 

  4. Cui, G.H., Hong, F., Yu, X.X., 1997. A class of optimal algorithms for determine the convex hull of a set of nodes in a plane. Chin. J. Computers, 20(4):330–334 (in Chinese).

    Google Scholar 

  5. Jin, W.H., He, T., Liu, X.P., Tang, W.Q., Tang, R.X., 1998. A fast convex hull algorithm of planar point set based on sorted simple polygon. Chin. J. Computers, 21(6):533–539 (in Chinese).

    MathSciNet  Google Scholar 

  6. Joswig, M., Ziegler, G.M., 2004. Convex hulls, oracles, and homology. J. Symb. Comput., 38:1247–1259. [doi:10.1016/j.jsc.2003.08.006]

    MathSciNet  Article  MATH  Google Scholar 

  7. Kirkpatrick, D.G., Seidel, R., 1986. The ultimate planar convex hull algorithm? SIAM J. Computers, 15(1):287–299. [doi:10.1137/0215021]

    MathSciNet  Article  MATH  Google Scholar 

  8. Kong, X.S., Cai, H.X., 1994. An algorithm for finding the convex hull of a simple polygon using active double line testing. Chin. J. Computers, 17(8):596–600 (in Chinese).

    Google Scholar 

  9. Lee, T.D., 1983. On finding the convex hull of a simple polygon. Int. J. Comp. & Inf., 12(2):87–98.

    MathSciNet  Article  MATH  Google Scholar 

  10. Levcopoulos, C., Lingas, A., Mitchell, J.S.B., 2002. Adaptive Algorithms for Constructing Convex Hulls and Triangulations of Polygonal Chains. 8th Scandinavian Workshop on Algorithm Theory. Turku, FL, p.80–89.

  11. Liu, J.Y., 2002. Discussion on an O(n) time algorithm for the convex hull of a planar point set. Chin. J. Computers, 25(6):670–672 (in Chinese).

    MathSciNet  Google Scholar 

  12. McCallum, D., Avis, D., 1979. A linear algorithm for finding the convex hull of a simple polygon. Inf. Processing Lett., 9:201–206. [doi:10.1016/0020-0190(79)90069-3]

    MathSciNet  Article  MATH  Google Scholar 

  13. Melkman, A.A., 1987. On-line construction of the convex hull of a simple polygon. Inf. Processing Lett., 25(1):11–12. [doi:10.1016/0020-0190(87)90086-X]

    MathSciNet  Article  MATH  Google Scholar 

  14. O’Rourke, J., 1998. Computational Geometry in C (2nd Ed.). Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  15. Preparata, F.P., Shamos, M.I., 1985. Computational Geometry: An Introduction. Springer-Verlag, New York, p.45–46.

    Book  MATH  Google Scholar 

  16. Sklansky, J., 1972. Measuring concavity on a rectangular mosaic. IEEE Trans. on Comput., C-21(12):1355–1364. [doi:10.1109/T-C.1972.223507]

    MathSciNet  Article  MATH  Google Scholar 

  17. Wang, Z.Q., Hong, J.Z., Xiao, L.J., 1998. An optimal real time algorithm for determine the convex hull of a set of points in a plane. Chin. J. Computers, 21(Suppl.):351–356 (in Chinese).

    Google Scholar 

  18. Wu, Z.H., Ye, C.Q., Pan, Y.H., 1997. An improved algorithm of convex hull computing. J. Computer-Aided Design & Computer Graphics, 9(1):9–13 (in Chinese).

    Google Scholar 

  19. Yao, C.A., 1981. A lower bound to finding convex hulls. J. ACM, 28(4):780–787. [doi:10.1145/322276.322289]

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Project (No. 2004AA420100) supported by the National Hi-Tech Research and Development Program (863) of China

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Gh., Chen, Cb. A new algorithm for computing the convex hull of a planar point set. J. Zhejiang Univ. - Sci. A 8, 1210–1217 (2007). https://doi.org/10.1631/jzus.2007.A1210

Download citation

Key words

  • Computational geometry
  • Convex hull
  • Extreme points
  • Ordered convex hull point sequence

CLC number

  • TP391