Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 8, Issue 8, pp 1210–1217 | Cite as

A new algorithm for computing the convex hull of a planar point set

  • Liu Guang-hui 
  • Chen Chuan-bo 
Article

Abstract

When the edges of a convex polygon are traversed along one direction, the interior of the convex polygon is always on the same side of the edges. Based on this characteristic of convex polygons, a new algorithm for computing the convex hull of a simple polygon is proposed in this paper, which is then extended to a new algorithm for computing the convex hull of a planar point set. First, the extreme points of the planar point set are found, and the subsets of point candidate for vertex of the convex hull between extreme points are obtained. Then, the ordered convex hull point sequences between extreme points are constructed separately and concatenated by removing redundant extreme points to get the convex hull. The time complexity of the new planar convex hull algorithm is O(nlogh), which is equal to the time complexity of the best output-sensitive planar convex hull algorithms. Compared with the algorithm having the same complexity, the new algorithm is much faster.

Key words

Computational geometry Convex hull Extreme points Ordered convex hull point sequence 

CLC number

TP391 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharya, B.K., Sen, S., 1997. On a simple, practical, optimal, output-sensitive randomized planar convex hull algorithm. Journal of Algorithms, 25(1):177–193. [doi:10.1006/jagm.1997.0869]MathSciNetCrossRefMATHGoogle Scholar
  2. Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G., 2004. Space-efficient planar convex hull algorithms. Theor. Computer Sci., 321(1):25–40. [doi:10.1016/j.tcs.2003.05.004]MathSciNetCrossRefMATHGoogle Scholar
  3. Brönnimann, H., Chan, T.M., 2006. Space-efficient algorithms for computing the convex hull of a simple polygonal line in linear time. Comput. Geom., 34(2):75–82. [doi:10.1016/j.comgeo.2005.11.005]MathSciNetCrossRefMATHGoogle Scholar
  4. Cui, G.H., Hong, F., Yu, X.X., 1997. A class of optimal algorithms for determine the convex hull of a set of nodes in a plane. Chin. J. Computers, 20(4):330–334 (in Chinese).Google Scholar
  5. Jin, W.H., He, T., Liu, X.P., Tang, W.Q., Tang, R.X., 1998. A fast convex hull algorithm of planar point set based on sorted simple polygon. Chin. J. Computers, 21(6):533–539 (in Chinese).MathSciNetGoogle Scholar
  6. Joswig, M., Ziegler, G.M., 2004. Convex hulls, oracles, and homology. J. Symb. Comput., 38:1247–1259. [doi:10.1016/j.jsc.2003.08.006]MathSciNetCrossRefMATHGoogle Scholar
  7. Kirkpatrick, D.G., Seidel, R., 1986. The ultimate planar convex hull algorithm? SIAM J. Computers, 15(1):287–299. [doi:10.1137/0215021]MathSciNetCrossRefMATHGoogle Scholar
  8. Kong, X.S., Cai, H.X., 1994. An algorithm for finding the convex hull of a simple polygon using active double line testing. Chin. J. Computers, 17(8):596–600 (in Chinese).Google Scholar
  9. Lee, T.D., 1983. On finding the convex hull of a simple polygon. Int. J. Comp. & Inf., 12(2):87–98.MathSciNetCrossRefMATHGoogle Scholar
  10. Levcopoulos, C., Lingas, A., Mitchell, J.S.B., 2002. Adaptive Algorithms for Constructing Convex Hulls and Triangulations of Polygonal Chains. 8th Scandinavian Workshop on Algorithm Theory. Turku, FL, p.80–89.Google Scholar
  11. Liu, J.Y., 2002. Discussion on an O(n) time algorithm for the convex hull of a planar point set. Chin. J. Computers, 25(6):670–672 (in Chinese).MathSciNetGoogle Scholar
  12. McCallum, D., Avis, D., 1979. A linear algorithm for finding the convex hull of a simple polygon. Inf. Processing Lett., 9:201–206. [doi:10.1016/0020-0190(79)90069-3]MathSciNetCrossRefMATHGoogle Scholar
  13. Melkman, A.A., 1987. On-line construction of the convex hull of a simple polygon. Inf. Processing Lett., 25(1):11–12. [doi:10.1016/0020-0190(87)90086-X]MathSciNetCrossRefMATHGoogle Scholar
  14. O’Rourke, J., 1998. Computational Geometry in C (2nd Ed.). Cambridge University Press, Cambridge.CrossRefMATHGoogle Scholar
  15. Preparata, F.P., Shamos, M.I., 1985. Computational Geometry: An Introduction. Springer-Verlag, New York, p.45–46.CrossRefMATHGoogle Scholar
  16. Sklansky, J., 1972. Measuring concavity on a rectangular mosaic. IEEE Trans. on Comput., C-21(12):1355–1364. [doi:10.1109/T-C.1972.223507]MathSciNetCrossRefMATHGoogle Scholar
  17. Wang, Z.Q., Hong, J.Z., Xiao, L.J., 1998. An optimal real time algorithm for determine the convex hull of a set of points in a plane. Chin. J. Computers, 21(Suppl.):351–356 (in Chinese).Google Scholar
  18. Wu, Z.H., Ye, C.Q., Pan, Y.H., 1997. An improved algorithm of convex hull computing. J. Computer-Aided Design & Computer Graphics, 9(1):9–13 (in Chinese).Google Scholar
  19. Yao, C.A., 1981. A lower bound to finding convex hulls. J. ACM, 28(4):780–787. [doi:10.1145/322276.322289]MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Liu Guang-hui 
    • 1
  • Chen Chuan-bo 
    • 1
  1. 1.College of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations