Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 8, Issue 6, pp 921–925 | Cite as

Bayesian mapping of neural tube defects prevalence in Heshun County, Shanxi Province, China during 1998∼2001

  • Chi Wen-xue 
  • Wang Jin-feng 
  • Li Xin-hu 
  • Zheng Xiao-ying 
  • Liao Yi-lan 
Article

Abstract

Objective

To estimate the prevalence rates of neural tube defects (NTDs) in Heshun County, Shanxi Province, China by Bayesian smoothing technique.

Methods

A total of 80 infants in the study area who were diagnosed with NTDs were analyzed. Two mapping techniques were then used. Firstly, the GIS software ArcGIS was used to map the crude prevalence rates. Secondly, the data were smoothed by the method of empirical Bayes estimation.

Results

The classical statistical approach produced an extremely dishomogeneous map, while the Bayesian map was much smoother and more interpretable. The maps produced by the Bayesian technique indicate the tendency of villages in the southeastern region to produce higher prevalence or risk values.

Conclusions

The Bayesian smoothing technique addresses the issue of heterogeneity in the population at risk and it is therefore recommended for use in explorative mapping of birth defects. This approach provides procedures to identify spatial health risk levels and assists in generating hypothesis that will be investigated in further detail.

Key words

Birth defects Neural tube defects (NTDs) Disease map Spatial analysis Bayesian smoothing China 

CLC number

TP317 R18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antó, J.M., Cullinan, P., 2001. Clusters, classification and epidemiology of interstitial lung diseases concepts, methods and critical reflections. Eur. Resp. J., 18(Suppl. 32):101–106.Google Scholar
  2. Bergamaschi, R., Montomoli, C., Candeloro, E., Monti, M., Cioccale, R., Bernardinelli, L., Fratino, P., Cosi, V., 2006. Bayesian mapping of multiple sclerosis prevalence in the province of Pavia, northern Italy. J. Neurol. Sci., 244:127–131. [doi:10.1016/j.jns.2006.01.013]CrossRefGoogle Scholar
  3. Berke, O., 2004. Exploratory disease mapping: kriging the spatial risk function from regional count data. Int. J. Health Geogr., 3:18. [doi:10.1186/1476-072X-3-18]CrossRefGoogle Scholar
  4. Berke, O., 2005. Exploratory spatial relative risk mapping. Prevent. Veter. Med., 71:173–182. [doi:10.1016/j.prevetmed.2005.07.003]CrossRefGoogle Scholar
  5. Dolk, H., 2004. Epidemiologic approaches to identifying environmental causes of birth defects. Am. J. Med. Genet., 125C:4–11. [doi:10.1002/ajmg.c.30000]CrossRefGoogle Scholar
  6. Finkelman, R.B., 2004. Potential health impacts of burning coal beds and waste banks. Int. J. Coal Geol., 59:19–24. [doi:10.1016/j.coal.2003.11.002]CrossRefGoogle Scholar
  7. Frey, L., Hauser, W.A., 2003. Epidemiology of neural tube defects. Epilepsia, 44(Suppl. 3):4–13. [doi:10.1046/j.1528-1157.44.s3.2.x]CrossRefGoogle Scholar
  8. Goujard, J., 1999. Clusters of birth defects: emergency and management. A review of some publications. Eur. J. Epidemiol., 15:853–862. [doi:10.1023/A:1007530216916]CrossRefGoogle Scholar
  9. Jarup, L., Best, N., Toledano, M.B., Wakefield, J., Elliott, P., 2002. Geographical epidemiology of prostate cancer in Great Britain. Int. J. Cancer, 97:695–699. [doi:10.1002/ijc.10113]CrossRefGoogle Scholar
  10. Lawson, A.B., Böhning, D., Biggeri, A., Lesaffre, E., Viel, J.F., John, W., Sons, L., 1999. Disease Mapping and its Uses. In: Lawson, A.B. (Ed.), Disease Mapping and Risk Assessment for Public Health. John Wiley & Sons, New York, p.3–13.Google Scholar
  11. MacNab, Y.C., 2004. Bayesian spatial and ecological models for small-area accident and injury analysis. Accident Anal. & Prevent., 36:1019–1028. [doi:10.1016/j.aap.2002.05.001]CrossRefGoogle Scholar
  12. Maiti, T., 1998. Hierarchical Bayes estimation of mortality rates for disease mapping. J. Statist. Planning and Inference, 69:339–348. [doi:10.1016/S0378-3758(97)00165-1]MathSciNetCrossRefMATHGoogle Scholar
  13. Mather, F.J., Chen, V.W., Morgan, L.H., Correa, C.N., Shaffer, J.G., Srivastav, S.K., Rice, J.C., George, B., Swalm, C.M., Wu, X.C., et al., 2006. Hierarchical modeling and other spatial analyses in prostate cancer incidence data. Am. J. Prevent. Med., 30(2S):88–100. [doi:10.1016/j.amepre.2005.09.012]CrossRefGoogle Scholar
  14. Meza, J.L., 2003. Empirical bayes estimation smoothing of relative risks in disease mapping. J. Statist. Planning and Inference, 112:43–62. [doi:10.1016/S0378-3758(02)00322-1]MathSciNetCrossRefMATHGoogle Scholar
  15. Sankoh, O.A., Berke, O., Simboro, S., Becher, H., 2002. Bayesian and GIS Mapping of Childhood Mortality in Rural Burkina Faso. Control of Tropical Infectious Diseases. Uni-Heidelberg Discussion Paper.Google Scholar
  16. Shen, X.M., Wu, S.H., Yan, C.H., 2001. Impacts of low-level lead exposure on development of children recent studies in China. Clin. Chim. Acta, 313:217–220. [doi:10.1016/S0009-8981(01)00675-1]CrossRefGoogle Scholar
  17. Staubach, C., Schmid, V., Knorr-Held, L., Ziller, M., 2002. A Bayesian model for spatial wildlife disease prevalence data. Prevent. Veter. Med., 56:75–87. [doi:10.1016/S0167-5877(02)00125-3]CrossRefGoogle Scholar
  18. Sun, G.F., 2004. Arsenic contamination and arsenicosis in China. Toxicol. Appl. Pharm., 198:268–271. [doi:10.1016/j.taap.2003.10.017]CrossRefGoogle Scholar
  19. Verkasalo, P.K., Kokki, E., Pukkala, E., Vartiainen, T., Kiviranta, H., Penttinen, A., Pekkanen, J., 2004. Cancer risk near a polluted river in Finland. Environ. Health Perspect., 112(9):1026–1031.CrossRefGoogle Scholar
  20. Wall, P.A., Devine, O.J., 2000. Interactive analysis of the spatial distribution of disease using a geographic information system. J. Geogr. Syst., 2:243–256. [doi:10.1007/PL00011457]CrossRefGoogle Scholar
  21. Wu, J.L., Wang, J.F., Meng, B., Chen, G., Pang, L.H., Song, X.M., Zhang, K.L., Zhang, T., Zheng, X.Y., 2004. Exploratory spatial data analysis for the identification of risk factors to birth defects. BMC Public Health, 4:23. [doi:10.1186/1471-2458-4-23]CrossRefGoogle Scholar
  22. Zheng, B.S., Ding, Z.H., Huang, R.G., Zhu, J.M., Yu, X.Y., Wang, A.M., Zhou, D.X., Mao, D.J., Su, H.C., 1999. Issues of health and disease relating to coal use in southwestern China. Int. J. Coal Geol., 40:119–132. [doi:10.1016/S0166-5162(98)00064-0]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Chi Wen-xue 
    • 1
  • Wang Jin-feng 
    • 2
  • Li Xin-hu 
    • 2
  • Zheng Xiao-ying 
    • 3
  • Liao Yi-lan 
    • 2
  1. 1.China University of GeosciencesBeijingChina
  2. 2.Institute of Geographical Sciences and Nature Resources ResearchChinese Academy of SciencesBeijingChina
  3. 3.Institute of Population ResearchPeking UniversityBeijingChina

Personalised recommendations