Advertisement

Journal of Zhejiang University SCIENCE B

, Volume 7, Issue 12, pp 969–973 | Cite as

Regularities in the E. coli promoters composition in connection with the DNA strands interaction and promoter activity

  • Berezhnoy Andrey Yu 
  • Shckorbatov Yuriy G. 
  • Hisanori Kiryu 
Article
  • 23 Downloads

Abstract

The energy of interaction between DNA strands in promoters is of great functional importance. Visualization of the energy of DNA strands distribution in promoter sequences was achieved. The separation of promoters in groups by their energetic properties enables evaluation of the dependence of promoter strength on the energetic properties. The analysis of groups (clusters) of promoters distributed by the energy of DNA strands interaction in −55, −35, −10 and +6 sequences indicates their connection with the transcriptional activity.

Key words

DNA sequence Promoter strength DNA chains interaction energy DNA sequences classification 

CLC number

Q75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berezhnoy, A.Y., Shckorbatov, Y.G., 2005. Dependence of E. coli promoter strength and physical parameters upon the nucleotide sequence. J. Zhejiang University Sci. B, 6(11): 1063–1068. [doi:10.1631/jzus.2005.B1063]CrossRefGoogle Scholar
  2. Craig, M.L., Tsodikov, O.V., McQuade, K.L., Schlax, P.E.Jr, Capp, M.W., Saecker, R.M., Record, M.T.Jr., 1998. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA. J. Mol. Biol., 283(4): 741–756. [doi:10.1006/jmbi.1998.2129]PubMedCrossRefGoogle Scholar
  3. Dombroski, A.J., 1997. Recognition of the −10 promoter sequence by a partial polypeptide of σ70 in vitro. J. Biol. Chem., 272:3487–3494.PubMedGoogle Scholar
  4. Harley, C.B., Reynolds, R.P., 1987. Analysis of E. coli promoter sequences. Nucleic Acids Res., 15:2343–2361.PubMedGoogle Scholar
  5. Hawley, D.K., McClure, W.R., 1983. Compilation and analysis of Escherichia coli promoter sequences. Nucleic Acids Res., 11:2237–2255.PubMedGoogle Scholar
  6. Huang, X., Lopez de Saro, F.J., Helmann, J.D., 1997. Sigma factor mutations affecting the sequence-selective interaction of RNA polymerase with −10 region single-stranded DNA. Nucleic Acids Res., 25(13):2603–2609. [doi:10.1093/nar/25.13.2603]PubMedCrossRefGoogle Scholar
  7. Kanehisa, M., Goto, S., Kawashima, S., Kuno, Y., Hattori, M., 2004. The KEGG resources for deciphering the genome. Nucleic Acids Res., 32(90001):D277–D280. [doi:10.1093/nar/gkh063]PubMedCrossRefGoogle Scholar
  8. Kudritskaya, Z.G., Danilov, V.I., 1976. Quantum mechanical study of bases interactions in various associates in atomic dipole approximation. J. Theor. Biol., 59(2):303–318. [doi:10.1016/0022-5193(76)90172-7]PubMedCrossRefGoogle Scholar
  9. Lewin, B., 2004. Genes-VIII. Pearson Prenice Hall, New York.Google Scholar
  10. Mori, H., Isono, K., Horiuchi, T., Miki, T., 2000. Functional genomics of Escherichia coli in Japan. Res. Microbiol., 151(2):121–128. [doi:10.1016/S0923-2508(00)00119-4]PubMedCrossRefGoogle Scholar
  11. Record, M.T.Jr, Reznikoff, W.S., Craig, M.L., McQuade, K.L., Schlaz, P.J., 1996. Escherichia coli RNA Polymerase (Eσ70), Promoters, and the Kinetics of the Steps of Transcription Initiation. In: Neidhardt, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.R., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., Umbarger, H.E. (Eds.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd Ed. ASM Press, Washington DC, p.792–820.Google Scholar
  12. Roberts, C.W., Roberts, J.W., 1996. Base-specific recognition of the nontemplate strand of promoter DNA by E. coli RNA polymerase. Cell, 86(3):495–501. [doi:10.1016/S0092-8674(00)80122-1]PubMedCrossRefGoogle Scholar
  13. Saecker, R.M., Tsodikov, O.V., McQuade, K.L., Schlax, P.E.Jr, Capp, M.W., Record, M.T.Jr, 2002. Kinetic studies and structural models of the association of E. coli sigma (70) RNA polymerase with the lambdaP (R) promoter: large scale conformational changes in forming the kinetically significant intermediates. J. Mol. Biol., 319(3):649–671. [doi:10.1016/S0022-2836(02)00293-0]PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Berezhnoy Andrey Yu 
    • 1
  • Shckorbatov Yuriy G. 
    • 2
  • Hisanori Kiryu 
    • 3
  1. 1.National Scientific CenterKharkov Physical-Technical InstituteKharkovUkraine
  2. 2.Institute of BiologyKharkov National UniversityKharkovUkraine
  3. 3.Computational Biology Research CenterNational Institute of Advanced Industrial Science and TechnologyTokyoJapan

Personalised recommendations