Advertisement

Journal of Zhejiang University SCIENCE B

, Volume 7, Issue 9, pp 732–737 | Cite as

Non-occupational lead exposure and hypertension in Pakistani adults

  • Rahman Sohaila 
  • Khalid Nasir 
  • Zaidi Jamshed Hussian 
  • Ahmad Shujaat 
  • Iqbal Mohammad Zafar 
Article

Abstract

Hypertension is one of the most prevalent diseases in the developed and developing countries. Based on the long historical association and the provocative findings of blood pressure effects at low level of lead exposure a study was carried out to determine if an association existed between low blood lead concentration and hypertension. In this study the effects of low-level exposure to lead on blood pressure were examined among 244 adults using atomic absorption spectrometer. For quality assurance purpose certified reference materials i.e., Animal blood A-13, Bovine liver 1577 and cotton cellulose V-9 from IAEA (International Atomic Energy Agency) and NIST (National Institute of Standard Technology) were analyzed under identical experimental conditions. The mean age of hypertensive adults was 52 years (range 43∼66). The mean values of systolic and diastolic blood pressure were (209±11.7) (range 170∼250) and (117±2.9) (range 105}140) mmHg respectively. Blood lead concentration ranged from 78∼201 μg/L with a mean of 139 μg/L and 165∼497 μg/L with a mean of 255 μg/L in normal and hypertensive adults respectively. Increase in systolic blood pressure was significantly predictive with increase in blood lead levels. Body mass index (BMI) and lipid profile including total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol and triglyceride correlated with blood pressure.

Key words

Hypertension Lead exposure Biochemical parameters Body mass index 

CLC number

R544.1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bargman, R.F., 1985. Dietary factors in essential hypertension. Prog. Food Nutr. Sci., 9(1–2):109–147.Google Scholar
  2. Batuman, V., Landy, E., Marcsaka, J.K., Wedeen, R., 1983. Contribution of lead to hypertension with renal impairment. N. Engl. J. Med., 309:17–21.PubMedCrossRefGoogle Scholar
  3. Behne, D., 1981. Sources of error in sampling and sample preparation for trace element analysis in medicine. J. Clin. Chem. Clin. Biochem., 19:115–120.PubMedGoogle Scholar
  4. Bhardwaj, S., Chandra, O., Khan, A.S., 1991. Serum and urinary lead levels in hypertension. Indian J. Pharmac., 23:69–77.Google Scholar
  5. Brainina, K., Schafer, H., Ivanova, A., Khanina, R., 1996. Determination of copper, lead and cadmium in whole blood by stripping voltametry with the use of graphite electrode. Anal. Chim. Acta, 330(2–3):175–181. [doi:10.1016/0003-2670(96)00181-X]CrossRefGoogle Scholar
  6. Brockhaus, A., Freier, I., Ewers, U., Jermann, E., Dolgner, R., 1983. Levels of cadmium and lead in blood in relation to smoking, sex, occupation, and other factors in an adult population of FRG. Int. Arch. Occup. Environ. Health, 52(2):167–175. [doi:10.1007/BF00405420]PubMedCrossRefGoogle Scholar
  7. Cheng, Y., Schwartz, J., Sparrow, D., Aro, A., Weiss, S.T., Hu, H., 2001. Bone lead and blood lead levels in relation to baseline blood pressure and the prospective development of hypertension the normative aging study. American J. Epidemiol., 153(2):164–171. [doi:10.1093/aje/153.2.164]CrossRefGoogle Scholar
  8. Granadillo, V.A., Tahan, J.E., Salgado, O., 1995. The influence of the blood levels of lead, aluminum and vanadium upon the arterial hypertension. Clin. Chim. Acta, 233(1–2):47–59. [doi:10.1016/0009-8981(94)05966-V]PubMedCrossRefGoogle Scholar
  9. Harlan, W.R., 1998. The relationship of blood lead levels to blood pressure in the US population. Environ. Health Perspect., 78:9–14.Google Scholar
  10. Kurppa, K., Hietanen, E., Klockars, M., Partinen, M., Rantannen, J., Ronnemaa, T., Viikari, J., 1984. Chemical exposures at work and cardiovascular morbidity. Atherosclerosis, ischemic heart disease, hypertension, cardiomyopathy and arrhythmias. Scand J. Work Environ. Health, 10(6):381–388.PubMedGoogle Scholar
  11. Landgrin, P.J., Baker, E., Whitworth, R., Feldman, R.G., 1980. Biochemistry of Ultra Trace Elements In: Needleman, H.L. (Ed.), Low Lead Exposure, the Clinical Implementation of Current Research. Plenum Press, New York and London, p.17.Google Scholar
  12. Louekari, K., Valkonen, S., Pousi, S., Virtanen, L., 1991. Estimated dietary intake of lead and their concentration in blood. Sci. Total Environ., 105:87–99. [doi:10.1016/0048-9697(91)90331-8]PubMedCrossRefGoogle Scholar
  13. McMichael, A.J., Johnson, H.M., 1982. Long-term mortality profile of heavily exposed lead smelter workers. J. Occup. Med., 24:375–378.PubMedGoogle Scholar
  14. Muntner, P., He, J., Vupputuri, S., Coresh, J., Batuman, V., 2003. Blood lead and chronic kidney disease in the general United States population, results from NHANES III. Kidney Int., 63(3):1044–1050. [doi:10.1046/j.1523-1755.2003.00812.x]PubMedCrossRefGoogle Scholar
  15. Nixon, D.E., 1996. Routine clinical determination of lead, arsenic, cadmium and thallium in urine and whole blood by inductively coupled plasma mass spectrometry. Spectrochim. Acta, 51B(1):13–25.Google Scholar
  16. Pocock, S.J., Shaper, A.G., Ashby, D., Delves, I., 1984. Blood lead concentration, blood pressure, and renal function. Br. Med. J., 289:872–874.CrossRefGoogle Scholar
  17. Rifai, N., Bachorik, P.S., Albers, J., Tietz, J., 1999. Textbook of Clinical Chemistry, 3rd Ed. W.B. Saunders Company, Philadelphia, p.809–861.Google Scholar
  18. Shang, S., Hang, W., 1997. Flame atomic absorption spectrometry using micro volume injection technique for the determination of Cu, Zn, Ca, Mg and Fe in whole blood from healthy infant and mother ears. Fresenius. J. Anal. Chem., 357(7):997–999. [doi:10.1007/s002160050290]CrossRefGoogle Scholar
  19. Stephen, M., 2001. Current Medical Diagnosis and Treatment, 40th Ed. Lawrence Tierney, McGraw Hill Company, USA.Google Scholar
  20. Subramanian, K.S., Meranger, J.C., 1983. Blood levels of cadmium, copper, lead and zinc in children in a British Columbia community. Sci. Total Environ., 30:231–244. [doi:10.1016/0048-9697(83)90015-3]PubMedCrossRefGoogle Scholar
  21. Xilei, L., Renterghem, V., Cornelis, R., Mees, L., 1988. Radiochemical neutron activation analysis for thirteen trace metals in human blood serum by using inorganic ion exchange. Anal. Chim. Acta, 211(1):231–241. [doi:10.1016/S0003-2670(00)83683-1]CrossRefGoogle Scholar

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Rahman Sohaila 
    • 1
  • Khalid Nasir 
    • 1
  • Zaidi Jamshed Hussian 
    • 1
  • Ahmad Shujaat 
    • 1
  • Iqbal Mohammad Zafar 
    • 2
  1. 1.Nuclear Chemistry DivisionPakistan Institute of Nuclear Science and TechnologyIslamabadPakistan
  2. 2.Dean Faculty of BiosciencesUniversity of Health SciencesLahorePakistan

Personalised recommendations