Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 11, pp 1878–1885 | Cite as

Simulation and analysis of energy optimization for PEMFC hybrid system

  • Liu Cheng-ze 
  • Zhu Xin-jian 


The control objective and several key parameters of PEMFC hybrid system are analyzed. Control strategy design and energy optimization simulation are made individually for given cycle case and realtime operating case. For the given cycle case, genetic algorithm is adopted to solve the multi-constraint combinatorial optimization problem. Simulation result showed the algorithm’s feasibility. As far as the realtime operation is concerned, based on the original fuzzy control strategy, the fuel cell voltage and voltage variance parameters are introduced to apply two-level modification on the fuzzy control output. The result reveals that the improved fuzzy control strategy can enhance the fuel cell efficiency and reduce the power fluctuations.

Key words

PEMFC Hybrid system Energy optimization Fuzzy control 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barili, A., Cersea, M., Parisi, C., 1995. Energy-saving Motion Control for an Autonomous Mobile Robot. Proceedings of the IEEE International Symposium, Pavia, Italy, 2:674–676.Google Scholar
  2. Gao, Y., Ehsani, M., 2001. Systematic Design of Fuel Cell Powered Hybrid Vehicle Drive Train. Electric Machines and Drives Conference, IEMDC 2001, Cambridge, America, p.604–611. [doi:10.1109/IEMDC.2001.939375]Google Scholar
  3. Haugen, L.B., Ayers, P.D., 2003. Vehicle movement patterns and vegetative impacts during military training exercises. Journal of Terramechanics, 40(2):83–95. [doi:10.1016/j.jterra.2003.09.004]CrossRefGoogle Scholar
  4. Iqbal, M.T., 2003. Modelling and control of a wind fuel cell hybrid energy system. Renewable Energy, 28(2):223–237. [doi:10.1016/S0960-1481(02)00016-2]CrossRefGoogle Scholar
  5. Lee, H.S., Jeong, K.S., Oh, B.S., 2003. An experimental study of controlling strategies and drive forces for hydrogen fuel cell hybrid vehicles. International Journal of Hydrogen Energy, 28(2):215–222. [doi:10.1016/S0360-3199(02)00038-1]CrossRefGoogle Scholar
  6. Markel, T., Brooker, A., Hendricks, T., Johnson, V., Kelly, K., Kramer, B., O’Keefe, M., Sprik, S., Wipke, K., 2002. ADVISOR: a systems analysis tool for advanced vehicle modelling. Journal of Power Sources, 110(2):255–266. [doi:10.1016/S0378-7753(02)00189-1]CrossRefGoogle Scholar
  7. Nasiri, A., Rimmalapudi, V.S., 2004. Active Control of a Hybrid Fuel Cell-battery System. Power Electronics and Motion Control Conference, IPEMC 2004, Xi’an, China, 2:491–496.Google Scholar
  8. van Mierlo, J., van den Bossche, P., Maggetto, G., 2004. Models of energy sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators. Journal of Power Sources, 128(1):76–89. [doi:10.1016/j.jpowsour.2003.09.048]CrossRefGoogle Scholar
  9. Wipke, K., Markel, T., Nelson, D., 2001. Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV.

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Liu Cheng-ze 
    • 1
  • Zhu Xin-jian 
    • 1
  1. 1.Department of AutomationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations